你的位置:首頁 > 電源管理 > 正文

硅功率MOSFET前景堪憂?

發(fā)布時間:2013-05-15 責(zé)任編輯:felixsong

【導(dǎo)讀】30年前硅功率MOSFET的出現(xiàn)使市場快速接受開關(guān)電源,硅功率MOSFET成為很多應(yīng)用的必選功率器件。近些年來,MOSFET不可避免地進(jìn)入到性能瓶頸期;然而與此同時,增強(qiáng)型GaN HEMT器件在開關(guān)性能和整個器件帶寬有突破性改善,迅速占領(lǐng)市場。硅功率MOSFET在電源轉(zhuǎn)換領(lǐng)域的發(fā)展已經(jīng)走到盡頭了嗎?

30年前硅功率MOSFET的出現(xiàn)使市場快速接受開關(guān)電源,硅功率MOSFET成為很多應(yīng)用的必選功率器件。近些年來,MOSFET不可避免地進(jìn)入到性能 瓶頸期;然而與此同時,增強(qiáng)型GaN HEMT器件在開關(guān)性能和整個器件帶寬有突破性改善,迅速占領(lǐng)市場。硅功率MOSFET在電源轉(zhuǎn)換領(lǐng)域的發(fā)展已經(jīng)走到盡頭了嗎?

擁有30年發(fā)展史的硅功率MOSFET

功率MOSFET作為雙極晶體管的替代品最早出現(xiàn)于1976年。與那些少數(shù)載流子器件相比,這些多數(shù)載流子器件速度更快、更堅固,并且具有更高的電流增益。因此開關(guān)型電源轉(zhuǎn)換技術(shù)得以真正商用化。早期臺式電腦的AC/DC開關(guān)電源是最早使用功率MOSFET的批量消費(fèi)產(chǎn)品之一,隨后出現(xiàn)了變速電機(jī)驅(qū)動、熒光燈、DC/DC轉(zhuǎn)換器等數(shù)千種如今已經(jīng)深入我們?nèi)粘I畹钠渌鼞?yīng)用。

國際整流器公司于1978年11月推出的IRF100是最早的功率MOSFET器件之一。這種器件具有100V的漏極-源極擊穿電壓和0.1Ω的導(dǎo)通電 阻,樹立了那個時代的基準(zhǔn)。由于裸片尺寸超過40mm2,價格高達(dá)34美元,因此這種產(chǎn)品沒有立即廣泛地替代傳統(tǒng)的雙極晶體管。

多年來許多制造商持續(xù)推出了許多代功率MOSFET產(chǎn)品。30年多來,基準(zhǔn)基本上每年都會更新。至寫這篇文章時,100V基準(zhǔn)公認(rèn)為是英飛凌的IPB025N10N3G所保持。與IRF100的4Ω–mm2品質(zhì)因數(shù)(FOM)相比,IPB025N10N3G的FOM不到0.1Ω–mm2。這個值幾乎已經(jīng)達(dá)到硅器件的理論極限。

不過改進(jìn)仍在持續(xù)。例如,CoolMOS器件和IGBT的導(dǎo)通性能已經(jīng)超過了簡單垂直型多數(shù)載流子MOSFET的理論極限。這些創(chuàng)新在相當(dāng)長一段時間內(nèi)可能還會繼續(xù),并且會充分利用功率MOSFET的低成本結(jié)構(gòu)和訓(xùn)練有素的設(shè)計師,而這些設(shè)計師經(jīng)過多年實(shí)踐后已經(jīng)學(xué)會如何有效發(fā)掘電源轉(zhuǎn)換電路和系統(tǒng)的性能。

開啟GaN新時代

HEMT(高電遷移率晶體管)GaN晶體管最早出現(xiàn)于2004年左右,當(dāng)時日本的Eudyna公司推出了一種耗盡型射頻晶體管。通過在碳化硅基板上使用GaN,Eudyna公司成功生產(chǎn)出為射頻市場設(shè)計的晶體管。HEMT結(jié)構(gòu)基于的是1975年最先由T Mimura et al描述,并且在1994年再次由M. A. Khan et al描述的一種現(xiàn)象,這種現(xiàn)象展示了接近AlGaN和GaN異質(zhì)結(jié)構(gòu)界面之間接口處異常高的電遷移率。將這種現(xiàn)象應(yīng)用于碳化硅上生長的氮化鎵,Eudyna公司成功生產(chǎn)出在數(shù)兆赫茲頻率范圍內(nèi)的基準(zhǔn)功率增益。2005年,Nitronex公司推出第一種耗盡型射頻HEMT晶體管,這種晶體管利用硅基上生成的GaN(6)晶圓制造,采用的是公司自己的SIGANTIC技術(shù)。

隨著另外幾家公司參與市場,GaN射頻晶體管在射頻應(yīng)用領(lǐng)域繼續(xù)闊步前進(jìn)。但這個市場之外的接受性非常有限,主要原因是器件成本和耗盡型操作的不方便。

圖1:硅基GaN器件具有與橫向型DMOS器件類似的非常簡單結(jié)構(gòu),可以在標(biāo)準(zhǔn)CMOS代工廠制造。
圖1:硅基GaN器件具有與橫向型DMOS器件類似的非常簡單結(jié)構(gòu),可以在標(biāo)準(zhǔn)CMOS代工廠制造。

突破屏障

30年的硅功率MOSFET歷史告訴我們,控制突破性技術(shù)的普及率有四大關(guān)鍵因素:

1.這種技術(shù)能否支持重大的新功能?

2.這種技術(shù)是否容易使用?

3.這種技術(shù)對用戶來說是否極具成本效益?

4.這種技術(shù)是否可靠?

在接下來的章節(jié)中我們將根據(jù)上述四條準(zhǔn)則展開討論能夠替代主流硅功率MOSFET的硅基板GaN功率晶體管之現(xiàn)狀。然后我們會進(jìn)一步了解GaN的近期開發(fā)計劃,并預(yù)測它們對電源轉(zhuǎn)換行業(yè)的影響。

GaN功率晶體管支持的新功能

增強(qiáng)型GaN HEMT器件(eHEMT)能支持的最大新功能是開關(guān)性能和整個器件帶寬的突破性改善(見圖2)。GaN擁有比硅高得多的關(guān)鍵電場,因此這種新器件的漏極至源極之間可以承受高得多的電壓,而對導(dǎo)通電阻的負(fù)面影響卻很小。
圖2:宜普公司增強(qiáng)型GaN功率晶體管的增益與頻率關(guān)系曲線
圖2:宜普公司增強(qiáng)型GaN功率晶體管的增益與頻率關(guān)系曲線。

在功率MOSFET中,在器件從導(dǎo)通到關(guān)斷(或從關(guān)斷到導(dǎo)通狀態(tài))所需的器件傳導(dǎo)率和電荷數(shù)量之間需要做一個基本的權(quán)衡。從這種權(quán)衡可以推導(dǎo)出稱為RQ乘積的品質(zhì)因數(shù)。這個指標(biāo)被定義為器件的導(dǎo)通電阻乘以在正常工作電壓和電流條件下開關(guān)器件所必需的向柵極提供的總電荷量。事實(shí)表明,這一指標(biāo)的改善有助于提高高頻DC/DC轉(zhuǎn)換器的轉(zhuǎn)換效率。RQ的絕對值一般也反映了實(shí)際電路中可以實(shí)現(xiàn)的最小脈寬。雖然過去幾年中RQ乘積得到了很大的改善,但硅功率MOSFET的品質(zhì)因數(shù)仍未真正接近市場上已經(jīng)推出的第一代eHEMT器件。圖3對額定電壓為100V和200V的基準(zhǔn)硅器件和GaN器件作了比較。
圖3:100V和200V的基準(zhǔn)硅功率MOSFET和GaN的RQ乘積比較
圖3:100V和200V的基準(zhǔn)硅功率MOSFET和GaN的RQ乘積比較

相關(guān)閱讀:

第三講:基于MOSFET的高能效電源設(shè)計
http://anotherwordforlearning.com/power-art/80020873
實(shí)例分析,MOSFET驅(qū)動電路的設(shè)計
http://anotherwordforlearning.com/cp-art/80020456
如何提升數(shù)字控制電源性能?MOSFET驅(qū)動器有辦法
http://anotherwordforlearning.com/power-art/80019131

[page]
DC/DC轉(zhuǎn)換器

能夠快速開關(guān)并且沒有太多功率損失意味著用戶在電源轉(zhuǎn)換電路中可以采用更小的脈沖寬度。需要這種能力的一種重要新興應(yīng)用是非隔離型DC/DC轉(zhuǎn)換器。硅功率MOSFET的基本極限性能限制了單級非隔離型降壓轉(zhuǎn)換器的指標(biāo),其實(shí)際的輸入電壓與輸出電壓之比最大值只能達(dá)到10:1。除了這個比值外,降壓電路頂端晶體管要求的短脈寬也將導(dǎo)致不可接受的高開關(guān)損耗和由此引起的低轉(zhuǎn)換效率。GaN晶體管完全打破了這一性能框架,如圖4和圖5所示。
圖4:不同輸入電壓下降壓轉(zhuǎn)換器效率與電流的關(guān)系
圖4:不同輸入電壓下降壓轉(zhuǎn)換器效率與電流的關(guān)系

圖5a:在降壓拓?fù)渲惺褂肊PC1001晶體管實(shí)現(xiàn)的300kHz 48V至1V轉(zhuǎn)換波形
圖5a:在降壓拓?fù)渲惺褂肊PC1001晶體管實(shí)現(xiàn)的300kHz 48V至1V轉(zhuǎn)換波形

圖5b:開關(guān)頻率為1.5MHz的48V至1V轉(zhuǎn)換波形
圖5b:開關(guān)頻率為1.5MHz的48V至1V轉(zhuǎn)換波形
 
圖5c:48V至0.5V轉(zhuǎn)換波形
圖5c:48V至0.5V轉(zhuǎn)換波形

GaN除了能增加VIN/VOUT比值范圍外,還能顯著降低降壓轉(zhuǎn)換器在任何VIN/VOUT比值時的開關(guān)損耗。比較12V至1V轉(zhuǎn)換器就可以發(fā)現(xiàn)這種性能的顯著改善,見圖6。

圖6:對三種流行的負(fù)載點(diǎn)轉(zhuǎn)換器和采用EPC1014 EPC1015 GaN晶體管開發(fā)的轉(zhuǎn)換器在VIN=12V和VOUT=1V、電流為5A和開關(guān)頻率為600kHz時的功率損失比較
圖6:對三種流行的負(fù)載點(diǎn)轉(zhuǎn)換器和采用EPC1014/EPC1015 GaN晶體管開發(fā)的轉(zhuǎn)換器在VIN=12V和VOUT=1V、電流為5A和開關(guān)頻率為600kHz時的功率損失比較

隨著新的GaN晶體管快速涵蓋當(dāng)前功率MOSFET和IGBT的電流和電壓范圍,AC/DC轉(zhuǎn)換、同步整流和功率因素校正都將能實(shí)現(xiàn)明顯的性能提高。

D類音頻放大器

D類音頻放大器經(jīng)常面臨著成本、體積和聲音失真之間的折衷考慮。影響失真的最大因素是死區(qū)時間和輸出濾波器的相移。

D類音頻放大器有三種根據(jù)死區(qū)時間改變輸出脈寬的獨(dú)特操作模式。正向電感電流模式是基于高側(cè)開關(guān)進(jìn)行整流,反向電感電流模式是基于低側(cè)開關(guān)進(jìn)行整流,而雙向電流則基于每個開關(guān)進(jìn)行整流。這些模式將死區(qū)時間分別設(shè)置在上升沿、下降沿或既不是上升沿也不是下降沿的地方。死區(qū)時間長短決定了與這種現(xiàn)象有關(guān)的失真度。有限開關(guān)速度和體二極管前向電壓將進(jìn)一步增強(qiáng)這一效應(yīng)。增強(qiáng)型GaN晶體管具有非常低的柵極電荷,因此具有非常短的延時和非??斓拈_關(guān)速度。高精度的開關(guān)允許更好地控制開關(guān)情況,進(jìn)一步縮短死區(qū)時間,從而實(shí)現(xiàn)更低的失真。

輸出濾波器的尺寸和反饋增益由開關(guān)頻率決定。在低開關(guān)頻率時,必須使用大的濾波電容和電感,以便從想要的信號中消除載波頻率。大值的濾波元件不僅增加了放大器的成本和尺寸,還會造成相移,從而降低系統(tǒng)的穩(wěn)定性,限制用于補(bǔ)償許多元件失真的反饋增益,最終影響系統(tǒng)的保真度。采用傳統(tǒng)硅MOSFET時開關(guān)頻率非常有限,因?yàn)楣臅捎诟唛_關(guān)損耗而迅速上升。

GaN晶體管能夠同時提供低的RDS(ON)和低的柵極電荷(QG),因此在數(shù)MHz范圍內(nèi)都能提供出色的效率。這時放大器可以使用更小值的濾波元件,從而減少它們對成本、尺寸和失真的影響,并允許更高的增益反饋,減小開關(guān)放大器對失真的影響。是以增強(qiáng)型GaN晶體管可以給D類應(yīng)用帶來明顯更高的保真度和更低的成本。

相關(guān)閱讀:

第三講:基于MOSFET的高能效電源設(shè)計
http://anotherwordforlearning.com/power-art/80020873
實(shí)例分析,MOSFET驅(qū)動電路的設(shè)計
http://anotherwordforlearning.com/cp-art/80020456
如何提升數(shù)字控制電源性能?MOSFET驅(qū)動器有辦法
http://anotherwordforlearning.com/power-art/80019131

[page]
增強(qiáng)型GaN晶體管易于使用嗎?

器件是否容易使用取決于多方面因素,包括使用者技能、待開發(fā)電路的難易程度、與用戶熟悉的器件相比有多大的差異以及幫助用戶使用器件的工具可用性等。

新一代增強(qiáng)型GaN晶體管的行為與現(xiàn)有功率MOSFET非常相似,因此用戶可以充分利用已有的設(shè)計經(jīng)驗(yàn)。有兩個關(guān)鍵領(lǐng)域需要特別加以關(guān)注:較低的柵極電介強(qiáng)度(及在有限柵極漏電流于每毫米柵極寬度毫安數(shù)量級)和較高的頻率響應(yīng)。這兩種差異中的第一種——較低柵極電介強(qiáng)度將隨著技術(shù)的成熟而不斷提高。同時,需要采取一定的措施消除工作區(qū)的靜電放電現(xiàn)象,并且設(shè)計電路時要保持VGS低于數(shù)據(jù)手冊中的最大值。第二種差異——較高頻率響應(yīng)不僅是指階躍函 數(shù)性能比以前任何硅器件要高,而且用戶在設(shè)計電路版圖時需要多加考慮。例如,少量的雜散寄生電感可能導(dǎo)致柵極至源極電壓發(fā)生較大的過沖現(xiàn)象,進(jìn)而有可能損壞器件。

另一方面,也有幾種特性使得這些器件比它們的前代硅器件更加容易使用。例如,閾值電壓實(shí)際上在很寬范圍內(nèi)獨(dú)立于溫度,導(dǎo)通電阻的溫度系數(shù)也比硅小得多。

GaN晶體管也能夠在高達(dá)300℃的溫度下正常工作,但在125℃以上,PCB的焊接會影響實(shí)際應(yīng)用。因此第一款商用增強(qiáng)型器件的工作溫度最高為125℃。

圖7:從易用性的角度對硅功率MOSFET和EPC1001 GaN晶體管的基本特性作了較為完整的比較
圖7:從易用性的角度對硅功率MOSFET和EPC1001 GaN晶體管的基本特性作了較為完整的比較

易于使用的工具對新器件的易用性起了很大的作用。圖8顯示了一個簡單電路,并對實(shí)際器件性能和使用TSPICE模型仿真的結(jié)果作了比較。雖然還需要做多些使這些模型操作完善的工作,但第一代產(chǎn)品應(yīng)提供相當(dāng)可靠的電路性能預(yù)測,從而提高 工程師的產(chǎn)能,縮短產(chǎn)品上市時間。

圖8:電路圖及EPC1001 TSPICE仿真結(jié)果與實(shí)際測量的電路性能的波形圖比較
圖8:電路圖及EPC1001 TSPICE仿真結(jié)果與實(shí)際測量的電路性能的波形圖比較

影響產(chǎn)品成本的基本因素有:

影響產(chǎn)品成本的基本因素有四個:(1)初始材料;(2)外延生長;(3)晶圓制造;(4)測試與裝配。

為了便于分析,影響成本的其它因素如良率、工程成本、包裝和運(yùn)輸成本以及一般開銷成本,在不同的技術(shù)下被設(shè)定為相同。

初始材料

硅基GaN器件一般在150mm基板上生產(chǎn)(未來產(chǎn)品將移植到200mm),而這一領(lǐng)域中的許多制造商是在100mm至200mm的基板上生產(chǎn)功率MOSFET的。由于GaN器件使用標(biāo)準(zhǔn)的硅基板,因此與在相同直徑的初始材料上制造功率MOSFET相比,成本不變。事實(shí)上,在150mm和200mm硅晶圓之間,每單位面積的成本差別是很少,因此我們可以得出的結(jié)論是GaN在每片晶圓之起始材料方面,就不存在真正的成本差異。如果考慮到具有相同電流承載能力的GaN器件面積比硅器件小,那么GaN每個功能的成本會更低。

外延生長

硅外延生長是一種成熟技術(shù),許多公司都制造高效率和自動化的機(jī)器。MOCVD GaN設(shè)備至少有兩個來源,即美國的Veeco和德國的Aixtron。這兩家公司都制造功能強(qiáng)大且可靠的機(jī)器,這些機(jī)器的主要用途就是發(fā)光二極管制造中使用的GaN外延生長。沒有一臺機(jī)器針對硅基GaN外延優(yōu)化過,也沒有硅機(jī)器中常見的自動化水平。因此,硅基GaN外延要比目前的硅外延較為昂貴。

但這種情況不是一成不變的。由于沒有像硅器件那樣的極限值,工藝次數(shù)和溫度、晶圓直徑、材料成本和機(jī)器產(chǎn)能都在快速進(jìn)步。在今后幾年內(nèi),假如GaN作為硅功率MOSFET替代品而得到廣泛采納,那么GaN外延成本有望迅速接近硅外延的成本。

晶圓制造

圖1所示的簡單結(jié)構(gòu)在標(biāo)準(zhǔn)硅晶圓代工廠那里制造并不復(fù)雜。加工溫度與硅CMOS相似,而且交叉污染也很容易管理。

在GaN功率器件和功率MOSFET的晶圓制造成本之間沒有材料方面的差異。

測試與裝配

硅基GaN器件的成本結(jié)構(gòu)在裝配工藝上有很大的區(qū)別,尤勝硅功率MOSFET,而測試成本是相同的。

硅功率MOSFET需要一個通常由銅引線框、鋁、金或銅線組成的環(huán)繞封裝,全都在澆鑄的環(huán)氧封套內(nèi)。對垂直硅器件的頂部和底部需要做連接,并且需要通過塑料壓模防止?jié)駳膺M(jìn)入有源器件,及將熱量排出器件的方法。

諸如SO8、TO220或DPAK等傳統(tǒng)功率MOSFET封裝會增加成本、電阻和熱阻,并減少產(chǎn)品可靠性和質(zhì)量。

硅基GaN可以用作“倒裝芯片”,不會影響電氣、散熱或可靠性能。

從圖9可以看出,有源器件區(qū)域是與硅基板隔離的,很像藍(lán)寶石上硅器件。因此,有源GaN器件可以由鈍化層完全密封。另外,硅基板可以直接連接到散熱器,實(shí)現(xiàn)出色的散熱性能。

圖9:硅基GaN可以用作“倒裝芯片”。有源器件與硅基板相隔離,因此可以在劃片前實(shí)現(xiàn)完全密封
圖9:硅基GaN可以用作“倒裝芯片”。有源器件與硅基板相隔離,因此可以在劃片前實(shí)現(xiàn)完全密封

總而言之,硅基GaN不需要封裝,因此能去除與封裝相關(guān)的一切成本、電路板面積、熱阻、電阻及封裝后功率器件經(jīng)常遇到的可靠性問題。

圖10羅列了2010年硅基GaN與硅功率晶體管的單位面積成本差異,并對2015年時的成本差異作了預(yù)測。由于相同功能的硅基GaN器件面積更小,總的結(jié)論是硅基GaN表現(xiàn)可以尤勝圖10所列。

圖10:2010年硅基GaN與硅功率晶體管的單位面積成本差異
圖10:2010年硅基GaN與硅功率晶體管的單位面積成本差異

相關(guān)閱讀:

第三講:基于MOSFET的高能效電源設(shè)計
http://anotherwordforlearning.com/power-art/80020873
實(shí)例分析,MOSFET驅(qū)動電路的設(shè)計
http://anotherwordforlearning.com/cp-art/80020456
如何提升數(shù)字控制電源性能?MOSFET驅(qū)動器有辦法
http://anotherwordforlearning.com/power-art/80019131

[page]
GaN可靠嗎?

在硅功率MOSFET方面累積的可靠性信息量是非常令人吃驚的。多年來許多人一直在埋頭理解故障機(jī)制、控制和調(diào)整工藝,并設(shè)計出有別于其它產(chǎn)品的、作為任何電源轉(zhuǎn)換系統(tǒng)中高可靠性的產(chǎn)品基準(zhǔn)。

硅基GaN晶體管才剛開始這一旅程。然而,初步結(jié)果極其鼓舞人心。Nitronex公司已經(jīng)發(fā)布了他們的質(zhì)量鑒定試驗(yàn)結(jié)果,器件并已成功應(yīng)用于許多射頻方案,效果良好。

圖11、12和13顯示了器件的中期表現(xiàn)結(jié)果。從圖中可以看到被測試器件在經(jīng)過1000小時的柵極應(yīng)力測試、漏極至源極應(yīng)力測試和暴露在高濕環(huán)境且有偏置條件下的穩(wěn)定性。
宜普公司還將器件用在48V至1V DC/DC轉(zhuǎn)換器中,在最大應(yīng)力條件下連續(xù)工作1000小時也沒有發(fā)生故障。

我們理解與這種新技術(shù)有關(guān)的各種故障機(jī)制還需要做很多工作。所有進(jìn)入這一個全新領(lǐng)域的工程人員都有望給這個知識庫作出貢獻(xiàn)。從目前我們擁有的數(shù)據(jù)來看,這種技術(shù)如今已經(jīng)能夠在商業(yè)應(yīng)用中達(dá)至可接受的可靠水平。
圖11:在125℃和+5Vgs條件下1000小時柵極應(yīng)力能力
圖11:在125℃和+5Vgs條件下1000小時柵極應(yīng)力能力
圖12:在125℃和100VDS條件下1000小時漏極至源極應(yīng)力能力
圖12:在125℃和100VDS條件下1000小時漏極至源極應(yīng)力能力
圖13:在相對濕度85%、溫度85℃、100VDS和沒有underfill情況下1000小時濕度應(yīng)力能力
圖13:在相對濕度85%、溫度85℃、100VDS和沒有underfill情況下1000小時濕度應(yīng)力能力
圖14:在40℃環(huán)境溫度和10A電流條件下使用兩個EPC1001 GaN晶體管的DC DC轉(zhuǎn)換器, 于連續(xù)工作1000小時后的結(jié)果
圖14:在40℃環(huán)境溫度和10A電流條件下使用兩個EPC1001 GaN晶體管的DC/DC轉(zhuǎn)換器, 于連續(xù)工作1000小時后的結(jié)果

未來發(fā)展方向

GaN發(fā)展之路才剛剛開始。以品質(zhì)因數(shù)RQ代表的基本器件性能將得到根本性的提升。隨著人們對材料和工藝的進(jìn)一步了解,在今后三年內(nèi)性能極有希望提高2倍,在今后10年內(nèi)有望提高10倍。

對GaN來說,影響電源轉(zhuǎn)換系統(tǒng)性能的最大機(jī)會也許來自在相同基板上同時集成功率級和信號級器件的固有能力。硅基GaN非常像SOI,在元件之間沒有顯著的寄生交互,因此設(shè)計師能夠很容易地在單個芯片上開發(fā)出單片電源系統(tǒng)。

圖15、16和17顯示了已經(jīng)制造出來的各種集成器件。圖15是松下公司制造的三相電機(jī)控制IC(17),內(nèi)含用6個功率晶體管設(shè)計的板載IC驅(qū)動器。圖16是宜普公司開發(fā)的全橋功率器件,圖17則是宜普公司提供的板載驅(qū)動器的功率晶體管。
圖15:帶集成控制和增強(qiáng)型GaN功率器件的單片三相反相器IC
圖15:帶集成控制和增強(qiáng)型GaN功率器件的單片三相反相器IC
圖16:宜普公司的單片全橋器件
圖16:宜普公司的單片全橋器件
圖17:宜普公司提供的帶集成式驅(qū)動器的GaN功率晶體管
圖17:宜普公司提供的帶集成式驅(qū)動器的GaN功率晶體管

在二十世紀(jì)七十年代晚期,功率MOSFET的開發(fā)先驅(qū)相信他們擁有了一種能夠完全替代雙極晶體管的技術(shù)。三十年后的今天,我們?nèi)杂写罅繎?yīng)用選擇了雙極晶體管而不是功率MOSFET,但功率MOSFET市場規(guī)模要比雙極晶體管市場大許多倍,因?yàn)樗行碌膽?yīng)用和新的市場都是由這種突破性技術(shù)培育出來的。

今天,增強(qiáng)型硅基GaN站在同樣的起跑線上。與1976年時的功率MOSFET一樣,我們正在開始令人興奮的旅程,幾乎每個月都有新產(chǎn)品和突破性功能推出。

功率MOSFET不會被完全淘汰出局,但其性能和成本的重大改善行將結(jié)束。在將來的十年內(nèi),GaN由于在性能和成本方面的巨大優(yōu)勢而很可能成為主導(dǎo)技術(shù)。隨著學(xué)習(xí)曲線的不斷展開,這種優(yōu)勢將進(jìn)一步擴(kuò)大。

相關(guān)閱讀:

第三講:基于MOSFET的高能效電源設(shè)計
http://anotherwordforlearning.com/power-art/80020873
實(shí)例分析,MOSFET驅(qū)動電路的設(shè)計
http://anotherwordforlearning.com/cp-art/80020456
如何提升數(shù)字控制電源性能?MOSFET驅(qū)動器有辦法
http://anotherwordforlearning.com/power-art/80019131

特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉