【導(dǎo)讀】2020年,5G終于真正到來(lái)了。設(shè)計(jì)工程師們目前非常關(guān)注的一個(gè)問(wèn)題是,5G技術(shù)在各種設(shè)備被廣泛應(yīng)用,是否會(huì)增加電子設(shè)備發(fā)熱風(fēng)險(xiǎn)?
● 5G設(shè)備中通信速度急劇增加,相關(guān)部件的負(fù)載也會(huì)增加。每個(gè)部件必須在單位時(shí)間內(nèi)處理的信息量也會(huì)急劇增加。
● 不僅如此,占用大量信息流量的圖像和視頻的清晰度將更高,而且攝像機(jī)的邊緣處理信息量和速度也將增加。
● 此外,支持這些信息處理的電源中,對(duì)大容量電池的快速充電是必不可少的。
這些說(shuō)明電子裝置內(nèi)部將有更多發(fā)熱源。
而且,多個(gè)發(fā)熱源以復(fù)雜方式工作的電子裝置內(nèi),發(fā)熱源之間還會(huì)相互傳熱影響。以往對(duì)單一發(fā)熱源采取的一些措施,可能并不適用于同時(shí)處理多個(gè)功能熱點(diǎn)的狀態(tài)。
監(jiān)測(cè)基板溫度的重要性
基于上述背景,監(jiān)測(cè)基板上多個(gè)位置的溫度、并根據(jù)電子設(shè)備的復(fù)雜功能去控制作為發(fā)熱源部件性能變得越來(lái)越重要性。
例如,當(dāng)執(zhí)行處理器加載很大的應(yīng)用程序時(shí),處理器在溫度較低的初始階段以全功率運(yùn)行。如果處理器溫度升高,則性能會(huì)降低,且不能超過(guò)閾值溫度控制。此時(shí),如果向處理器供電的電源部分的發(fā)熱很大,并且處理器能夠接收到來(lái)自電源部件的發(fā)熱,則處理器的溫度就可能急劇上升。要同時(shí)考慮處理器周?chē)碗娫碔C周?chē)臏囟龋陀斜匾?xì)地控制每個(gè)器件的性能。
在基板上進(jìn)行器件溫度控制的同時(shí)還需注意,由于發(fā)熱器件持續(xù)產(chǎn)生熱量,可能需要最終的過(guò)熱保護(hù)——例如顯示警告或切換至關(guān)閉狀態(tài)等。
基板上不僅需要考慮每個(gè)發(fā)熱源,還要考慮IC和模塊的內(nèi)部溫度,以及考慮彼此的熱交換和放置電子設(shè)備的周?chē)h(huán)境的溫度變化。因?yàn)?,如果不監(jiān)測(cè)發(fā)熱源周?chē)臏囟?,就不可能進(jìn)行上述提到的溫度管理。
用片式NTC熱敏電阻監(jiān)控基板溫度
這里選擇的溫度
傳感器是表面貼裝型片式NTC熱敏電阻。
圖1. 片式NTC熱敏電阻的尺寸和主要用途
片式熱敏電阻的尺寸符合EIA標(biāo)準(zhǔn),可以像相同標(biāo)準(zhǔn)的片式電阻或電容器一樣輕松安裝——在可以連接熱敏電阻的部位通過(guò)表面貼裝安裝熱敏電阻。
這類熱敏電阻作為溫度傳感器使用,配置自由度非常高,只要通過(guò)將傳感器放置在要測(cè)量的位置來(lái)檢測(cè)溫度即可。
此外,片式NTC熱敏電阻已經(jīng)建立了各種批量生產(chǎn)技術(shù)、構(gòu)造和管理方法,能夠大量生產(chǎn)具有不同特性的許多品種。增加產(chǎn)量只需使用相應(yīng)的大規(guī)模生產(chǎn)設(shè)備和工藝方法,從而很容易降低成本。
每個(gè)元器件制造商都在不斷追求器件的小型化,熱敏電阻中,0402mm尺寸已經(jīng)成為普通尺寸。與其他溫度傳感器相比,目前,片式熱敏電阻不僅具有成本優(yōu)勢(shì)、體積小,而且可以在未來(lái)得到進(jìn)一步降低成本和小型化。
熱敏電阻的其它魅力
圖2是使用了熱敏電阻的溫度檢測(cè)電路的例子。
圖2. 使用熱敏電阻的溫度檢測(cè)電路實(shí)例
將熱敏電阻和電阻串聯(lián),施加恒定電壓。這時(shí)的分壓與熱敏電阻的溫度的關(guān)系如圖3所示。
圖3. 表示分壓電壓 (Vout) 的溫度特性
在較寬的溫度范圍內(nèi)可以獲得非常大的電壓變化,這種電壓變化作為溫度信息來(lái)處理。具體而言,如果直接與微機(jī)的AD端口連接并進(jìn)行AD轉(zhuǎn)換,則能夠利用微機(jī)的邏輯將該AD值作為溫度信息進(jìn)行處理。例如,當(dāng)在某個(gè)溫度下發(fā)出警告時(shí),編程為當(dāng)檢測(cè)到與該溫度對(duì)應(yīng)的AD值時(shí)發(fā)出警告。
值得注意的是,這是一個(gè)很大的電壓變化。您是否注意到圖2的電路圖在AD轉(zhuǎn)換器 (ADC) 之前沒(méi)有放大器?不限于溫度傳感器,通常來(lái)自電子裝置中使用的傳感器的信號(hào)非常微弱,并且需要一些放大器 (信號(hào)放大器) 。熱敏電阻是少數(shù)不需要放大器的傳感器。
這里考慮一下ADC的分辨率。如圖2所示,假設(shè)施加至熱敏電阻的電壓與向微機(jī)內(nèi)的ADC供給的電壓相同,并且ADC的輸入范圍為0V~3V。如果ADC的分辨率為10位,則量化單元 (LSB:LeastSignificant Bit) 變?yōu)榇蠹s3mV。
另一方面,在與圖3相同的溫度范圍,即-20°C~+85°C下,能夠得到的單位溫度的電壓變化 (增益) 如圖4所示。即使在增益最小的溫度范圍的上限和下限,也可以獲得約10 mV/°C的增益。此時(shí),1 LSB相當(dāng)于約0.3°C。即使安裝在微型計(jì)算機(jī)中的10位ADC也可以預(yù)期約0.3°C的溫度分辨率。當(dāng)然,在室溫附近存在30 mV/°C以上的增益,因此1 LSB為0.1°C以下。
圖4. 表示單位溫度的電壓變化 (增益)
使用配備有微型計(jì)算機(jī)的標(biāo)準(zhǔn)ADC,可以通過(guò)簡(jiǎn)單的電路輕松形成溫度檢測(cè)電路。這是熱敏電阻廣泛用于電子設(shè)備溫度檢測(cè)的主要原因。
簡(jiǎn)單電路&高精度溫度測(cè)定
那么,使用普通熱敏電阻和電阻可以獲得多少溫度測(cè)量精度?
我們?cè)倏匆幌聢D3。該圖是使用電阻值容許差±1%的熱敏電阻和電阻器時(shí)的電壓溫度特性。對(duì)得到的電壓的中心值和細(xì)線根據(jù)部件的最大容許差等計(jì)算的電壓的上下限值進(jìn)行繪圖。由于幾乎看不到差,因此,將中心值為零時(shí)的上下限值換算為溫度的圖表如圖5所示。
圖5. 對(duì)圖3中Vout誤差溫度進(jìn)行換算
結(jié)果顯示,在+60°C下產(chǎn)生約±1°C的誤差,在+85°C下產(chǎn)生約±1.5°C的誤差。為了監(jiān)測(cè)電子設(shè)備內(nèi)部的溫度,例如基板溫度,可以預(yù)期足夠可靠的溫度測(cè)量精度。
因?yàn)檎谑褂玫钠骷碗娐肪哂袠O大的簡(jiǎn)單性,讀者應(yīng)該可以理解片式NTC熱敏電阻的高性價(jià)比。
村田的輔助設(shè)計(jì)工具
對(duì)于以上的計(jì)算和圖表制作,村田制作所提供了很方便的免費(fèi)線上輔助設(shè)計(jì)工具SimSurfing。
村田制作所SimSurfing輔助設(shè)計(jì)軟件界面
在設(shè)計(jì)溫度檢測(cè)電路時(shí),很難對(duì) “根據(jù)溫度能得到什么樣的電壓變化?”進(jìn)行成像。
SimSurfing是一款直觀操作仿真軟件,可以選擇熱敏電阻和電阻的常數(shù)以及使用它們的電路,并且可以在圖表中確認(rèn)獲得的電壓變化和預(yù)期的溫度誤差水平。
此外,由于所有計(jì)算結(jié)果都可以保存為1°C步驟的文本數(shù)據(jù),因此可以使用設(shè)計(jì)者自己的電路模擬器和電子表格軟件繼續(xù)檢查結(jié)果。
SimSuring還具有計(jì)算獲得的電壓溫度特性的近似公式和相反地從電壓獲得溫度的溫度電壓特性的功能。當(dāng)您通過(guò)計(jì)算在程序中計(jì)算從電壓到溫度的轉(zhuǎn)換時(shí),請(qǐng)使用它。
總結(jié):為什么選擇熱敏電阻
選擇NTC熱敏電阻監(jiān)控5G設(shè)備中的溫度,是因?yàn)闊崦綦娮璧牟贾米杂啥却?,有很好的成本降低和小型化空間,此外,還能夠以簡(jiǎn)單的電路得到預(yù)期的精度。
實(shí)際上,設(shè)計(jì)工程師還是需要適當(dāng)?shù)臅r(shí)間和精力來(lái)掌握諸如來(lái)自熱敏電阻的溫度信息和電子設(shè)備的狀態(tài)的驗(yàn)證,包括如何進(jìn)行ADC周?chē)膬?yōu)化等。但是,一旦采用熱敏電阻,工程師就可以享受到上述提到的優(yōu)點(diǎn)。
村田制作所不僅將提供出色的熱敏電阻,還通過(guò)設(shè)計(jì)支持工具和傳感器周?chē)臒嵩O(shè)計(jì)支持,幫助進(jìn)入5G時(shí)代的電子設(shè)備設(shè)計(jì)工程師監(jiān)測(cè)溫度。
推薦閱讀: