你的位置:首頁 > RF/微波 > 正文

ADALM2000活動:BJT多諧振蕩器

發(fā)布時間:2022-12-29 來源:ADI 責任編輯:wenwei

【導讀】本文解釋三種主要類型的多諧振蕩器電路以及如何構建每種電路。多諧振蕩器電路一般由兩個反相放大級組成。兩個放大器串聯(lián)或級聯(lián),反饋路徑從第二放大器的輸出接回到第一放大器的輸入。由于每一級都將信號反相,因此環(huán)路整體的反饋是正的。


多諧振蕩器主要分為三種類型:非穩(wěn)態(tài)、單穩(wěn)態(tài)和雙穩(wěn)態(tài)。非穩(wěn)態(tài)多諧振蕩器使用電容耦合兩個放大器級并提供反饋路徑。電容會阻隔任何從一級傳送到下一級的直流信號,因此非穩(wěn)態(tài)多諧振蕩器沒有穩(wěn)定的直流工作點,是一個自由運行的振蕩器。在單穩(wěn)態(tài)多諧振蕩器中,從一級到另一級的耦合使用一個電容,而第二個連接是通過直流路徑。因此,單穩(wěn)態(tài)多諧振蕩器有一個穩(wěn)定的直流級。除了施加觸發(fā)脈沖時之外,電路均保持這種單一的穩(wěn)定狀態(tài)。然后,狀態(tài)改變,持續(xù)時間為信號路徑的交流耦合部分的RC時間常數(shù)所設置的預定時長。在雙穩(wěn)態(tài)多諧振蕩器中,兩條耦合路徑都是直流耦合,因此電路具有兩種不同的穩(wěn)定狀態(tài),并且不使用電容。雙穩(wěn)態(tài)多諧振蕩器也被稱為觸發(fā)器,在任一時間處于兩種直流穩(wěn)定狀態(tài)中的一種狀態(tài)。


非穩(wěn)態(tài)多諧振蕩器


目標


第一個實驗的目的是構建一個非穩(wěn)態(tài)多諧振蕩器。兩個相同的電阻電容網(wǎng)絡決定振蕩發(fā)生的頻率。放大器件(晶體管)以共發(fā)射極配置連接,如圖1所示。


1.png

圖1. 非穩(wěn)態(tài)多諧振蕩器


材料


●   ADALM2000 主動學習模塊

●   無焊試驗板

●   跳線

●   兩個470 Ω電阻

●   兩個20 kΩ電阻

●   兩個小信號NPN晶體管(2N3904)

●   一個紅光LED

●   一個綠光LED

●   兩個47μF電容


說明


在無焊試驗板上構建圖1所示電路。請注意,ADALM2000板沒有輸入,只有電源。第一個反相放大器級由Q1、R1和用作輸出負載的紅光LED組成。第二個反相放大器級由Q2、R2和用作負載的綠光LED組成。C1將位于Q1集電極的第一級輸出耦合到位于Q2基極的第二級輸入。類似地,C2將位于Q2集電極的第二級輸出耦合回位于Q1基極的第一級輸入。


硬件設置


試驗板連接如圖2所示。


2.jpg

圖2. 非穩(wěn)態(tài)多諧振蕩器試驗板電路


程序步驟


只有在電路構建完畢并檢查之后,才能開啟VP電源。紅光和綠光LED應以大約1秒的間隔交替閃爍。您還可以使用示波器通道監(jiān)視輸出波形(Q和Q-bar)。


由于電容C1和C2的值較大,因此振蕩頻率非常慢。將C1和C2替換為0.1 μF電容。電路現(xiàn)在應該以快得多的速度振蕩,兩個LED同時亮起?,F(xiàn)在使用示波器通道測量輸出波形的頻率和周期。


3.jpg

圖3. 使用47 μF電容時的非穩(wěn)態(tài)多諧振蕩器間隔


4.jpg

圖4. 使用0.1 μF電容時的非穩(wěn)態(tài)多諧振蕩器間隔


單穩(wěn)態(tài)多諧振蕩器


目標


第二個實驗的目的是構建一個單穩(wěn)態(tài)多諧振蕩器。一個電阻電容網(wǎng)絡決定單穩(wěn)態(tài)多諧振蕩器輸出的持續(xù)時間。放大器件(晶體管)以共發(fā)射極配置連接,如圖2所示。


材料


●   ADALM2000主動學習模塊

●   無焊試驗板

●   跳線

●   兩個470 Ω電阻

●   一個1 kΩ電阻

●   一個20 kΩ電阻

●   一個47 kΩ電阻

●   一個小信號二極管(1N914)

●   兩個小信號NPN晶體管(2N3904)

●   一個紅光LED

●   一個綠光LED

●   一個47 μF電容


說明


在無焊試驗板上構建圖5所示電路。從實驗1中的電路出發(fā),移除一個20 kΩ電阻(舊R3),將電容C1替換為47 kΩ電阻(新R3)。在Q2的基極上添加二極管D1和電阻R5,如圖所示。務必將C2替換為原來的47 μF電容。


5.png

圖5. 單穩(wěn)態(tài)多諧振蕩器


硬件設置


試驗板連接如圖6所示。


6.jpg

圖6. 單穩(wěn)態(tài)多諧振蕩器試驗板電路


程序步驟


只有在電路構建完畢并檢查之后,才能開啟VP電源。紅光LED應亮起,綠光LED應熄滅。用一段電線將觸發(fā)器輸入(R5端)短暫觸碰VP,然后立即松開。紅光LED應熄滅,綠光LED點亮約一秒鐘,然后返回穩(wěn)定狀態(tài),紅光LED亮起,綠光LED熄滅。多試幾次。


1669804168502207.png

圖7. 觸發(fā)時的單穩(wěn)態(tài)多諧振蕩器行為


雙穩(wěn)態(tài)多諧振蕩器(或觸發(fā)器)


目標


第三個實驗的目的是構建一個雙穩(wěn)態(tài)多諧振蕩器。放大器件(晶體管)以共發(fā)射極配置連接,如圖8所示。


材料


●   ADALM2000主動學習模塊

●   無焊試驗板

●   跳線

●   兩個470 Ω電阻

●   兩個1 kΩ電阻

●   兩個47 kΩ電阻

●   兩個小信號NPN晶體管(2N3904)

●   兩個小信號二極管(1N914)

●   一個紅光LED

●   一個綠光LED


說明


在無焊試驗板上構建圖8所示電路。


8.png

圖8. 雙穩(wěn)態(tài)多諧振蕩器


硬件設置


試驗板連接如圖9所示。


9.jpg

圖9. 雙穩(wěn)態(tài)多諧振蕩器試驗板電路


程序步驟


只有在電路構建完畢并檢查之后,才能開啟VP電源。紅光LED應點亮而綠光LED熄滅,或者綠光LED應點亮而紅光LED熄滅。用一段電線將SET或RESET輸入(R5端或R6端)短暫觸碰VP,然后立即松開。LED應改變狀態(tài)或來回切換,具體取決于哪個輸入觸碰到VP。多試幾次。


1669804135669670.png

圖10. 觸發(fā)SET引腳的雙穩(wěn)態(tài)多諧振蕩器行為


1669804124784125.png

圖11. 觸發(fā)RESET引腳的雙穩(wěn)態(tài)多諧振蕩器行為


D型觸發(fā)器


目標


第四個實驗的目的是使用實驗3中的雙穩(wěn)態(tài)或SET-RESET觸發(fā)器來構建所謂的D型觸發(fā)器。


材料


●   ADALM2000主動學習模塊

●   無焊試驗板

●   跳線

●   三個1 kΩ電阻

●   一個100 kΩ電阻

●   兩個200 kΩ電阻

●   兩個47 kΩ電阻

●   三個小信號NPN晶體管(2N3904)

●   兩個小信號二極管(1N914)

●   兩個39 pF電容

●   兩個100 pF電容


說明


在無焊試驗板上構建圖12所示的D型觸發(fā)器電路。請注意,與圖8相比,兩個二極管的極性相反。此實驗將在高得多的頻率下進行,因此LED已被移除,改用簡單的1 kΩ負載電阻。


12.png

圖12. D型觸發(fā)器


觸發(fā)器兩種狀態(tài)之間的切換是通過施加D(數(shù)據(jù))信號和單個時鐘脈沖來實現(xiàn)的:根據(jù)D輸入相對于當前狀態(tài)的狀態(tài),在時鐘脈沖的負沿或下降沿,ON晶體管將斷開,OFF晶體管將導通。真D信號和互補DB信號(Q3、R7反相級的輸出)用于偏置二極管D1和D2,以將時鐘脈沖引導至正確的基極,這相當于圖8中的SET和RESET輸入。


為了說明電路如何工作,我們假設電路處于兩個穩(wěn)定狀態(tài)之一,QB輸出低電平(Q1的集電極電壓為0 V),Q輸出高電平(Q2的集電極電壓為5 V高電平)。當D輸入為低電平(DB為高電平)時,D1的陰極(通過R6)具有低電壓,其陽極(通過R4)具有高電壓(導通晶體管Q1的VBE),使其正向偏置。D2的陰極(通過R5)具有高電壓(來自DB),其陽極(通過R3)具有低電壓(關斷晶體管Q2的VBE),使其反向偏置。


由于D1正向偏置,所以時鐘輸入上的負向脈沖(通過C1和C2耦合)被引導至Q1的基極,但由于D2反向偏置,所以負向脈沖被Q2的基極阻隔。通過C3和R3并聯(lián)組合的交叉耦合連接使Q1關斷,并使Q2導通。由于我們之前在簡單雙穩(wěn)態(tài)多諧振蕩器中看到的正反饋效應,這種情況發(fā)生得非??焖?。電路現(xiàn)在處于另一種穩(wěn)定狀態(tài),Q輸出高電平,QB輸出低電平。電路將保持在該狀態(tài),直到D輸入變?yōu)楦唠娖讲⑶伊硪粋€負向時鐘脈沖到達之后。


硬件設置


試驗板連接如圖13所示。


13.jpg

圖13. D型觸發(fā)器試驗板電路


程序步驟


AWG1輸出應連接到圖12中標記的時鐘輸入。AWG2輸出應連接到D輸入。示波器通道1輸入應連接到時鐘輸入。示波器通道2應連接到圖12中觸發(fā)器的Q輸出。AWG1和AWG2均應配置為具有5 V幅度峰峰值和2.5 V偏移(0 V至5 V擺幅)的方波。將AWG1的頻率設置為10 kHz,將AWG2的頻率設置為5 kHz。將AWG2的相位設置為45度。務必將兩個AWG輸出配置為同步運行。


只有在電路構建完畢并檢查之后,才能開啟VP電源并使能AWG輸出。應能在Q輸出上觀察到一個方波,其與時鐘輸入信號的下降沿對齊。更改AWG2(D輸入信號)的相位,同時觀察此對齊。這會隨著D輸入的相位變化而變化嗎?將通道1示波器輸入移至D輸入。應能看到一個類似的方波信號,但它相對于Q輸出超前。換言之,Q輸出延遲到時鐘信號的下降沿為止。


14.jpg

圖14. Q和時鐘信號圖


15.jpg

圖15. Q和D信號圖


2分頻觸發(fā)器


目標


第五個實驗的目的是修改實驗4中的D型觸發(fā)器,以構建一個將輸入信號的頻率除以2的電路。


材料


●   ADALM2000主動學習模塊

●   無焊試驗板

●   跳線

●   兩個1 kΩ電阻

●   兩個200 kΩ電阻

●   兩個47 kΩ電阻

●   兩個小信號NPN晶體管(2N3904)

●   兩個小信號二極管(1N914)

●   兩個39 pF電容

●   兩個100 pF電容


說明


修改實驗4中的D型觸發(fā)器,在無焊試驗板上構建圖16所示的2分頻電路。


16.png

圖16. 2分頻電路


兩種狀態(tài)之間的切換是通過施加單個時鐘脈沖來實現(xiàn)的;在該時鐘脈沖的負沿或下降沿,這會導致ON晶體管斷開,OFF晶體管導通。依次向每個基極施加脈沖,該電路將順序切換,這是通過單個輸入時鐘脈沖來實現(xiàn)的——該時鐘脈沖用于偏置兩個二極管,根據(jù)觸發(fā)器的當前狀態(tài)將脈沖引導至正確的基極。


為了說明電路如何工作,我們假設電路處于兩個穩(wěn)定狀態(tài)之一,Q1的集電極電壓為低電平(0 V),Q2的集電極電壓為高電平(5 V)。D1的陰極(通過R6)具有低電壓,其陽極(通過R4)具有高電壓(導通晶體管Q1的VBE),使其正向偏置。D2的陰極(通過R5)具有高電壓,其陽極(通過R3)具有低電壓(關斷晶體管Q2的VBE),使其反向偏置。


由于D1正向偏置,所以外部負向脈沖(通過C1和C2耦合)被引導至Q1的基極,但由于D2反向偏置,所以負向脈沖被Q2的基極阻隔。通過C3和R3并聯(lián)組合的交叉耦合連接使Q1關斷,并使Q2導通。由于我們之前在簡單雙穩(wěn)態(tài)多諧振蕩器中看到的正反饋效應,這種情況發(fā)生得非??焖?。


電路現(xiàn)在處于第二穩(wěn)定狀態(tài),等待另一個負向時鐘脈沖。


由于Q2的集電極電壓(Q輸出節(jié)點)會隨著每個時鐘脈沖改變狀態(tài),因此每出現(xiàn)兩個時鐘輸入脈沖,輸出端就會出現(xiàn)一個脈沖。因此,它可以用作二分頻電路。


硬件設置


試驗板連接如圖17所示。


17.jpg

圖17. 2分頻觸發(fā)器試驗板電路


程序步驟


AWG1輸出和示波器通道1輸入均應連接到圖16中標記的時鐘輸入。示波器通道2應連接到圖16中觸發(fā)器的Q輸出。AWG1應配置為具有5 V幅度峰峰值和2.5 V偏移(0 V至5 V擺幅)的方波。將頻率設置為10 kHz。


只有在電路構建完畢并檢查之后,才能開啟VP電源并使能AWG1輸出。應能在Q輸出上觀察到一個方波,其頻率是AWG1信號頻率的一半。將通道2示波器輸入移至QB輸出。應能看到一個類似的方波信號,但它相對于Q輸出反相。


18.jpg

圖18. 時鐘和Q輸出圖


19.png

圖19. 時鐘和QB輸出圖


問題


對于圖1所示電路,增加或減少兩個電容的值會產(chǎn)生什么影響?


您可以在 學子專區(qū) 論壇上找到答案。


來源:ADI

作者:Doug Mercer 和 Antoniu Miclaus



免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯(lián)系小編進行處理。


推薦閱讀:


介紹一款基于PoE的互聯(lián)照明設計

如何通過最小化熱回路來優(yōu)化開關電源布局?

比把大象放冰箱復雜 電子系統(tǒng)中開關電源要分幾步?

降低噪聲小妙招:同步開關穩(wěn)壓器

防御保護物聯(lián)網(wǎng)節(jié)點的技術方法

特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉