典型的信號(hào)完整性問題
發(fā)布時(shí)間:2019-04-11 責(zé)任編輯:wenwei
【導(dǎo)讀】信號(hào)完整性的定義 定義:信號(hào)完整性(Signal Integrity,簡(jiǎn)稱SI)是指在信號(hào)線上的信號(hào)質(zhì)量。 差的信號(hào)完整性不是由某一單一因素導(dǎo)致的,而是板級(jí)設(shè)計(jì)中多種因素共同 引起的。當(dāng)電路中信號(hào)能以要求的時(shí)序、持續(xù)時(shí)間和電壓幅度到達(dá)接收端時(shí),該電路就有很好的信號(hào)完整性。當(dāng)信號(hào)不能正常響應(yīng)時(shí),就出現(xiàn)了信號(hào)完整性問題。
信號(hào)完整性包含:
1、波形完整性(Waveform integrity)
2、時(shí)序完整性(Timing integrity)
3、電源完整性(Power integrity)
信號(hào)完整性分析的目的就是用最小的成本,最快的時(shí)間使產(chǎn)品達(dá)到波形完 整性、時(shí)序完整性、電源完整性的要求。
我們知道:電源不穩(wěn)定、電源的干擾、信號(hào)間的串?dāng)_、信號(hào)傳輸過程中的反射,這些都會(huì)讓信號(hào)產(chǎn)生畸變,看下面這張圖,你就會(huì)知道理想的信號(hào),經(jīng)過:反射、串?dāng)_、抖動(dòng),最后變成什么鬼。
典型的信號(hào)完整性問題:反射、串?dāng)_、電源/ 地噪聲、時(shí)序等。
反射
由于傳輸系統(tǒng)阻抗不匹配,會(huì)使傳輸?shù)男盘?hào)不 能被完全吸收,造成部分能量返回。反射造成信號(hào)出現(xiàn)過沖(Overshoot)、振鈴(Ringing)、邊沿遲 緩(階梯電壓波)。過沖是振鈴的欠阻尼狀態(tài),邊沿遲緩是振鈴的過阻尼狀態(tài)。下圖為信號(hào)反射的三種表現(xiàn)形式。
過沖一方面會(huì)造成強(qiáng)烈的電磁干擾,另一方面 會(huì)損傷后面電路的輸入級(jí),甚至失效。而振鈴會(huì)帶 來信號(hào)長(zhǎng)時(shí)間不能穩(wěn)定,邊沿遲緩帶來信號(hào)上升時(shí) 間過長(zhǎng),二者都可能帶來信號(hào)的時(shí)序問題,如時(shí)鐘數(shù)據(jù)同步、建立與保持時(shí)間不滿足等。
PCB設(shè)計(jì)總有幾個(gè)阻抗沒法連續(xù)的地方,怎么辦?
PCB的阻抗控制
高速電路設(shè)計(jì)/信號(hào)完整性的一些基本概念
為什么一般傳輸線特性阻抗都希望控制為50歐姆?
為什么PCB走線中避免出現(xiàn)銳角和直角?
PCB中的平面跨分割
串?dāng)_ Crosstalk
由于導(dǎo)線之間間距過小,當(dāng)有快速變化的電流 流過導(dǎo)線時(shí)會(huì)產(chǎn)生交變的磁場(chǎng),而使鄰近的導(dǎo)線上 感應(yīng)出信號(hào)電壓,稱為串?dāng)_(Crosstalk)。 下圖為信號(hào)串?dāng)_試驗(yàn)?zāi)P停约笆苡绊懶盘?hào)線上的串?dāng)_信號(hào)。
串?dāng)_一方面是EMC主要根源之一,另一方面, 串?dāng)_干擾正常的信號(hào)流,有可能造成數(shù)據(jù)錯(cuò)誤,是造成誤碼的主要原因之一。問題發(fā)生沒有一定規(guī)律, 時(shí)隱時(shí)現(xiàn),診斷與定位往往花費(fèi)大量時(shí)間與精力。
串?dāng)_和反射能讓信號(hào)多不完整?
互感--連接器如何引起串?dāng)_
某單板經(jīng)常發(fā)現(xiàn)工作一段時(shí)間后,網(wǎng)口工作異 常,數(shù)據(jù)傳輸經(jīng)常有誤碼。詢問供應(yīng)商,該現(xiàn)象一 般和某芯片的信號(hào)受到干擾有關(guān)。 檢查 PCB 發(fā)現(xiàn),在相鄰層該信號(hào)和一條 100M 信號(hào)相重疊,中間沒有地平面分隔,由此引入干擾。
反射--初始波
當(dāng)驅(qū)動(dòng)器發(fā)射一個(gè)信號(hào)進(jìn)入傳輸線時(shí),信號(hào)的幅值取決于電壓、緩沖器的內(nèi)阻和傳輸線的阻抗。驅(qū)動(dòng)器端看到的初始電壓決定于內(nèi)阻和線阻抗的分壓。
反射系數(shù)
其中-1≤ρ≤1
當(dāng)ρ=0時(shí)無反射發(fā)生
當(dāng)ρ=1(Z 2 =∞,開路)時(shí)發(fā)生全正反射
當(dāng)ρ=-1(Z 2 =0,短路)時(shí)發(fā)生全負(fù)反射
初始電壓,是源電壓Vs(2V)經(jīng)過Zs(25歐姆)和傳輸線阻抗(50歐姆)分壓。
Vinitial=1.33V
后續(xù)的反射率按照反射系數(shù)公式進(jìn)行計(jì)算
源端的反射率,是根據(jù)源端阻抗(25歐姆)和傳輸線阻抗(50歐姆)根據(jù)反射系數(shù)公式計(jì)算為-0.33;
終端的反射率,是根據(jù)終端阻抗(無窮大)和傳輸線阻抗(50歐姆)根據(jù)反射系數(shù)公式計(jì)算為1;
我們按照每次反射的幅度和延時(shí),在最初的脈沖波形上進(jìn)行疊加就得到了這個(gè)波形,這也就是為什么,阻抗不匹配造成信號(hào)完整性不好的原因。
由于連接的存在、器件管腳、走線寬度變化、走線拐彎、過孔會(huì)使得阻抗不得不變化。所以反射也就不可避免。
串?dāng)_
電壓后者電流有變化,自然就會(huì)往外輻射電磁波
串?dāng)_是指當(dāng)信號(hào)在傳輸線上傳播時(shí),因電磁耦合對(duì)相鄰的傳輸線產(chǎn)生的不期望的電壓噪聲。
串?dāng)_是由電磁耦合引起的,耦合分為容性耦合和感性耦合兩種。
容性耦合是由于干擾源(Aggressor)上的電壓變化在被干擾對(duì)象(Victim)上引起感應(yīng)電流從而導(dǎo)致的電磁干擾;
而感性耦合則是由于干擾源上的電流變化產(chǎn)生的磁場(chǎng)在被干擾對(duì)象上引起感應(yīng)電壓從而導(dǎo)致的電磁干擾。因此,信號(hào)通過一導(dǎo)體時(shí)會(huì)在相鄰的導(dǎo)體上引起兩類不同的噪聲信號(hào):容性耦合信號(hào)和感性耦合信號(hào)。
感性耦合:
容性耦合:
電源完整性
電源完整性(Power integrity)簡(jiǎn)稱PI,是確認(rèn)電源來源及目的端的電壓及電流是否符合需求。
電源完整性在現(xiàn)今的電子產(chǎn)品中相當(dāng)重要。有幾個(gè)有關(guān)電源完整性的層面:芯片層面、芯片封裝層面、電路板層面及系統(tǒng)層面。在電路板層面的電源完整性要達(dá)到以下三個(gè)需求:
1、使芯片引腳的電壓噪聲+電壓紋波比規(guī)格要求要小一些(例如芯片電源管腳的輸入電壓要求1V之間的誤差小于+/-50 mV)
2、控制接地反彈(地彈)(同步切換噪聲SSN、同步切換輸出SSO)
3、降低電磁干擾(EMI)并且維持電磁兼容性(EMC):電源分布網(wǎng)絡(luò)(PDN)是電路板上最大型的導(dǎo)體,因此也是最容易發(fā)射及接收噪聲的天線。
名詞解釋:
a、“地彈”,是指芯片內(nèi)部“地”電平相對(duì)于電路板“地”電平的變化現(xiàn)象。以電路板“地”為參考,就像是芯片內(nèi)部的“地”電平不斷的跳動(dòng),因此形象的稱之為地彈(ground bounce)。
當(dāng)器件輸出端由一個(gè)狀態(tài)跳變到另一個(gè)狀態(tài)時(shí),地彈現(xiàn)象會(huì)導(dǎo)致器件邏輯輸入端產(chǎn)生毛刺。對(duì)于任何形式封裝的芯片,其引腳必會(huì)存在電感電容等寄生參數(shù),而地彈主要是由于GND引腳上的阻抗引起的。 集成電路的規(guī)模越來越大,開關(guān)速度不斷提高,地彈噪聲如果控制不好就會(huì)影響電路的功能,因此有必要深入理解地彈的概念并研究它的規(guī)律。
我們可以用下圖來直觀的解釋一下。圖中開關(guān)Q的不同位置代表了輸出的“0”“1”兩種狀態(tài)。假定由于電路狀態(tài)裝換,開關(guān)Q接通RL低電平,負(fù)載電容對(duì)地放電,隨著負(fù)載電容電壓下降,它積累的電荷流向地,在接地回路上形成一個(gè)大的電流浪涌。隨著放電電流建立然后衰減,這一電流變化作用于接地引腳的電感LG,這樣在芯片外的電路板“地”與芯片內(nèi)的地之間,會(huì)形成一定的電壓差,如圖中VG。這種由于輸出轉(zhuǎn)換引起的芯片內(nèi)部參考地電位漂移就是地彈。
芯片A的輸出變化,產(chǎn)生地彈。這對(duì)芯片A的輸入邏輯是有影響的。接收邏輯把輸入電壓和芯片內(nèi)部的地電壓差分比較確定輸入,因此從接收邏輯來看就象輸入信號(hào)本身疊加了一個(gè)與地彈噪聲相同的噪聲。
b、PDN
電路板設(shè)計(jì)中,都有電源分配網(wǎng)絡(luò)系統(tǒng)。電源分配網(wǎng)絡(luò)系統(tǒng)的作用就是給系統(tǒng)內(nèi)所有器件或芯片提供足夠的電源,并滿足系統(tǒng)對(duì)電源穩(wěn)定性的要求。
我們看到電源、GND網(wǎng)絡(luò),其實(shí)分布著阻抗。
電源噪聲余量計(jì)算:
1、芯片的datasheet會(huì)給一個(gè)規(guī)范值,通常是5%;要考慮到穩(wěn)壓芯片直流輸出誤差,一般是+/_2.5%,因此電源噪聲峰值幅度不超過+/_2.5%。
2、如芯片的工作電壓范圍是3.13~3.47,穩(wěn)壓芯片標(biāo)出輸出電壓是3.3V,安裝在電路板后的輸出電壓是3.36V。容許的電壓的變化范圍是3.47-3.36=110mv。穩(wěn)壓芯片輸出精度是+/_1%,及3.36* +/_1%=+/_33.6mv。電源噪聲余量為110-33.6=76.4mv。
計(jì)算電源噪聲要注意五點(diǎn)
(1)穩(wěn)壓芯片的輸出的精確值是多少。
(2)工作環(huán)境的是否是穩(wěn)壓芯片所推薦的環(huán)境。
(3)負(fù)載情況是怎么樣,這對(duì)穩(wěn)壓芯片輸出也有影響。
(4)電源噪聲最終會(huì)影響到信號(hào)質(zhì)量。而信號(hào)上的噪聲來源不僅僅是電源噪聲,反射竄擾等信號(hào)完整性問題也會(huì)在信號(hào)上疊加,因此不能把所有噪聲余量留給電源系統(tǒng)。
(5)不同的電壓等級(jí)對(duì)電源噪聲要求也不樣,電壓越小噪聲余量越小。模擬電路對(duì)電源要求更高。
電源噪聲來源
(1)穩(wěn)壓芯片輸出的電壓不是恒定的,會(huì)有一定的紋波。
(2)穩(wěn)壓電源無法實(shí)時(shí)響應(yīng)負(fù)載對(duì)于電流需求的快速變化。穩(wěn)壓電源響應(yīng)的頻率一般在200Khz以內(nèi),能做正確的響應(yīng),超過了這個(gè)頻率則在電源的輸出短引腳處出現(xiàn)電壓跌落。
(3)負(fù)載瞬態(tài)電流在電源路徑阻抗和地路徑阻抗產(chǎn)生的壓降。
(4)外部的干擾。
電源/地噪聲
當(dāng)信號(hào)狀態(tài)快速改變時(shí),在電源和地上會(huì)產(chǎn)生 紋波電流。由于電源和地上的電感的存在,信號(hào)突 變產(chǎn)生的尖峰電流將使電源和地上出現(xiàn)電壓的波 動(dòng)。系統(tǒng)幾十甚至上百個(gè)信號(hào)同時(shí)發(fā)生狀態(tài)改變時(shí), 有可能造成系統(tǒng)的誤動(dòng)作。由于電源/地噪聲的復(fù)雜 性,有時(shí)單獨(dú)作為電源完整性(Power Integrity)來 研究。
歷史參考文檔:
電源完整性與地彈噪聲的高速PCB仿真
電源完整性測(cè)量對(duì)象和測(cè)量?jī)?nèi)容
電源完整性設(shè)計(jì)
電源完整性設(shè)計(jì)2
電源完整性設(shè)計(jì)3
高速數(shù)字電路“接地”要點(diǎn)
電源完整性——理解與設(shè)計(jì)
時(shí)序問題
系統(tǒng)中數(shù)據(jù)的提取通常是由時(shí)鐘信號(hào)的上升沿 或下降沿觸發(fā),按照一定的節(jié)拍進(jìn)行,數(shù)據(jù)應(yīng)該及 時(shí)到達(dá)接收端并進(jìn)入穩(wěn)態(tài)。數(shù)據(jù)的超時(shí)延時(shí)和數(shù)據(jù) 的信號(hào)畸變都會(huì)造成數(shù)據(jù)的讀取錯(cuò)誤。接收端信號(hào) 由于出現(xiàn)嚴(yán)重的振鈴現(xiàn)象,部分進(jìn)入非穩(wěn)定狀態(tài), 會(huì)使數(shù)據(jù)不能被可靠地提取,造成誤碼問題。
時(shí)序分析基本概念
傳輸時(shí)間:傳輸時(shí)間是指信號(hào)在傳輸線上的傳播延時(shí),與線長(zhǎng)和信號(hào)傳播速度有關(guān)。通常我們認(rèn)為信號(hào)在傳輸線的傳輸速度為6000mil/ns,可以根據(jù)信號(hào)傳輸線的長(zhǎng)度得出傳輸時(shí)間。
飛行時(shí)間(Flight Time):指信號(hào)從驅(qū)動(dòng)端傳輸?shù)浇邮斩?,并達(dá)到一定的電平之間的延時(shí),和傳輸延遲和上升時(shí)間有關(guān)。
Tco:Tco是指器件的輸入時(shí)鐘邊緣觸發(fā)有效到輸出信號(hào)有效的時(shí)間差,這是信號(hào)在器件內(nèi)部的所有延遲總和。
建立時(shí)間:指的是接收端能夠正確地鎖存數(shù)據(jù),在時(shí)鐘邊沿來導(dǎo)之前應(yīng)該保持穩(wěn)定的最小時(shí)間,它表示數(shù)據(jù)有效必須先于時(shí)鐘有效的最小時(shí)間。
保持時(shí)間:為了成功的鎖存一個(gè)信號(hào)到接收端,器件必須要求數(shù)據(jù)信號(hào)在被時(shí)鐘沿觸發(fā)后繼續(xù)保持一段時(shí)間,以確保數(shù)據(jù)被正確的操作。這個(gè)最小的時(shí)間就是我們說的保持時(shí)間。
時(shí)鐘抖動(dòng)(Jitter):時(shí)鐘抖動(dòng)是指時(shí)鐘觸發(fā)沿的隨機(jī)誤差,時(shí)鐘抖動(dòng)通常指時(shí)鐘周期在周期與周期之間的變化。這個(gè)誤差是由時(shí)鐘發(fā)生器內(nèi)部產(chǎn)生的,和后期布線沒有關(guān)系。
時(shí)鐘偏移(Skew):是指由同樣的時(shí)鐘產(chǎn)生的多個(gè)子時(shí)鐘信號(hào)之間的延時(shí)差異。
采樣窗口:指我們通過示波器觀察到的信號(hào)的波形。
同步時(shí)鐘系統(tǒng) 時(shí)序設(shè)計(jì)——DDR為例
DDR布線在PCB設(shè)計(jì)中占有舉足輕重的地位,設(shè)計(jì)成功的關(guān)鍵就是要保證系統(tǒng)有充足的時(shí)序裕量。要保證系統(tǒng)的時(shí)序,線長(zhǎng)匹配又是一個(gè)重要的環(huán)節(jié)。我們來回顧一下,DDR布線,線長(zhǎng)匹配的基本原則是:地址,控制/命令信號(hào)與時(shí)鐘做等長(zhǎng)。數(shù)據(jù)信號(hào)與DQS做等長(zhǎng)。為啥要做等長(zhǎng)?大家會(huì)說是要讓同組信號(hào)同時(shí)到達(dá)接收端,好讓接收芯片能夠同時(shí)處理這些信號(hào)。那么,時(shí)鐘信號(hào)和地址同時(shí)到達(dá)接收端,波形的對(duì)應(yīng)關(guān)系是什么樣的呢?我們通過仿真來看一下具體波形。
建立如下通道,分別模擬DDR3的地址信號(hào)與時(shí)鐘信號(hào)。
圖1 地址/時(shí)鐘仿真示意圖
為方便計(jì)算,我們假設(shè)DDR的時(shí)鐘頻率為500MHz,這樣對(duì)應(yīng)的地址信號(hào)的速率就應(yīng)該是500Mbps,這里大家應(yīng)該明白,雖然DDR是雙倍速率,但對(duì)于地址/控制信號(hào)來說,依然是單倍速率的。下面來看看波形,在地址與時(shí)鐘完全等長(zhǎng)的情況下,地址與數(shù)據(jù)端的接收波形如下圖2,紅色代表地址信號(hào),綠色代表時(shí)鐘信號(hào)。
圖2 時(shí)鐘信號(hào)與地址信號(hào)波形
上面的波形我們似乎看不出時(shí)鐘與地址之間的時(shí)序關(guān)系是什么樣的,我們把它放在一個(gè)眼圖中,時(shí)序關(guān)系就很明確了。這里粗略的計(jì)算下建立時(shí)間與保持時(shí)間。如下圖
圖3 時(shí)鐘信號(hào)與地址信號(hào)波形
由上圖3.我們可以知道,該地址信號(hào)的建立時(shí)間大約為891ps,保持時(shí)間為881ps。這是在時(shí)鐘與地址信號(hào)完全等長(zhǎng)情況下的波形。如果地址與時(shí)鐘不等長(zhǎng),信號(hào)又是什么樣的呢?仿真中,我們讓地址線比時(shí)鐘線慢200ps,得到的與眼圖如下:
圖4 時(shí)鐘信號(hào)與地址信號(hào)波形
由上圖可知,在地址信號(hào)比時(shí)鐘信號(hào)長(zhǎng)的情況下,保持時(shí)間為684ps,建立越為1.1ns。可見,相對(duì)于地址線與時(shí)鐘線等長(zhǎng)來說,地址線比時(shí)鐘線長(zhǎng)會(huì)使地址信號(hào)的建立時(shí)間更短。同理,如果時(shí)鐘線比地址線長(zhǎng),則建立時(shí)間會(huì)變長(zhǎng),而保持時(shí)間會(huì)變短。那么雙倍速率的數(shù)據(jù)信號(hào)又是怎樣的?下面通過具體的仿真實(shí)例來看一下。
圖5 DQ 與 DQS仿真示意
仿真通道如上圖所示,驅(qū)動(dòng)端和接收端為某芯片公司的IBIS模型,仿真波形如下:
圖6 DQ與DQS仿真波形
我們將DQS和DQ信號(hào)同時(shí)生成眼圖,在一個(gè)窗口下觀測(cè),結(jié)果如下:
圖7 DQ與DQS眼圖
如上圖所示,大家可能發(fā)現(xiàn)了,如果按照原始對(duì)應(yīng)關(guān)系,數(shù)據(jù)信號(hào)的邊沿和時(shí)鐘信號(hào)的邊沿是對(duì)齊的,如果是這樣,時(shí)鐘信號(hào)怎樣完成對(duì)數(shù)據(jù)信號(hào)的采樣呢?實(shí)際上并不是這樣的。以上仿真只是簡(jiǎn)單的將兩波形放在了一起,因?yàn)镈Q和DQS的傳輸通道長(zhǎng)度是一樣的,所以他們的邊沿是對(duì)齊的。實(shí)際工作的時(shí)候,主控芯片會(huì)有一個(gè)調(diào)節(jié)機(jī)制。一般數(shù)據(jù)信號(hào)會(huì)比DQS提前四分之一周期被釋放出來,實(shí)際上,在顆粒端接收到的波形對(duì)應(yīng)關(guān)系應(yīng)該是這樣的:
圖8 平移后的眼圖
通過主控芯片的調(diào)節(jié)之后,DQS的邊沿就和DQ信號(hào)位的中心對(duì)齊了,這樣就能保證數(shù)據(jù)在傳輸?shù)浇邮斩擞凶銐虻慕r(shí)間與保持時(shí)間。和上面分析時(shí)鐘與地址信號(hào)一樣,如果DQ與DQS之間等長(zhǎng)做的不好,DQS的時(shí)鐘邊沿就不會(huì)保持在DQ的中間位置,這樣建立時(shí)間或者保持時(shí)間的裕量就會(huì)變小。先簡(jiǎn)單的來看一張圖
圖9 延時(shí)偏差對(duì)時(shí)序的影響
上圖中,T_vb與T_va表示的是主控芯片在輸出數(shù)據(jù)時(shí)時(shí)鐘與數(shù)據(jù)之間的時(shí)序參數(shù)。在理想情況下,時(shí)鐘邊沿和數(shù)據(jù)電平的中心是對(duì)齊的,由于時(shí)鐘和數(shù)據(jù)傳輸通道不等長(zhǎng),使得時(shí)鐘邊沿沒有和數(shù)據(jù)脈沖的中間位置對(duì)其,使得建立時(shí)間的裕量變小。在理解了這些基礎(chǔ)問題之后,我們需要做的就是將這些時(shí)間參數(shù)轉(zhuǎn)化為線長(zhǎng)。
下面我們通過具體實(shí)例來看看時(shí)序的計(jì)算,下圖是Freescale MPC8572 DDR主控芯片手冊(cè),這張圖片定義了從芯片出來的時(shí)候,DQS與DQ之間的相位關(guān)系。
圖10 MPC8572時(shí)序圖
圖11 MPC8572時(shí)序參數(shù)
顆粒端為美光DDR,該芯片的時(shí)序圖以及時(shí)序參數(shù)如下圖所示,這張圖片則定義了顆粒端芯片識(shí)別信號(hào)所需要的建立時(shí)間與保持時(shí)間。
圖12 DDR顆粒時(shí)序圖以及時(shí)序參數(shù)
我們用T_pcbskew來表示DQ與DQS之間的延時(shí)偏差,如果想要得到足夠的時(shí)序裕量,則延時(shí)偏差要滿足以下關(guān)系:
T_pcbskew《T_vb-T_setup
T_pcbskew》T_hold-T_va
代入數(shù)據(jù),有:
T_vb-T_setup=375-215=160ps
T_hold-T_va=-160ps
這樣,如果傳輸線的速度按照6mil/ps來計(jì)算,T_pcbskew為+/-960mil。大家會(huì)發(fā)現(xiàn)裕量很大,當(dāng)然這只是最理想情況,沒有考慮時(shí)鐘抖動(dòng)以及數(shù)據(jù)信號(hào)的抖動(dòng),以及串?dāng)_、碼間干擾帶來的影響,如果把這些因素都考慮進(jìn)來,留給我們布線偏差的裕量就比較小了。
綜上所述,時(shí)序控制的目的就是要保證數(shù)據(jù)在接收端有充足的建立時(shí)間與保持時(shí)間
眼圖
眼圖(EYE Diagram)介紹
所謂眼圖簡(jiǎn)單的說就是把一連串接收端接收到的脈沖信號(hào)(000,001,010,011, 100, 101,110,111)同時(shí)疊加在高速示波器上以形成眼圖,如下圖所示:
圖1
若在眼圖中加入一個(gè)多邊形以標(biāo)識(shí)信號(hào)真正存在的區(qū)域,即所謂的眼圖模板測(cè)試(Eye Mask)。因?yàn)檠蹐D模板測(cè)試可在一次量測(cè)中,計(jì)算出測(cè)試信號(hào)波形的上升時(shí)間、下降時(shí)間、噪聲與抖動(dòng)(Jitter)等,形成一套系統(tǒng)化的測(cè)量方法,因此眼圖已被多個(gè)協(xié)會(huì)(SATA, SAS, PCIE, USB, Ethernet等幾乎所有的高速總線協(xié)會(huì))采用來規(guī)范各種通信互連系統(tǒng)的標(biāo)準(zhǔn)測(cè)試項(xiàng)目。
圖 2
眼圖的特性是累加了一連串的脈沖時(shí)序,因此它具有測(cè)量信號(hào)重復(fù)性的作用。圖1的眼圖可以呈現(xiàn)許多信息;假如整個(gè)互連通信系統(tǒng)無任何噪聲時(shí),眼圖上的軌跡應(yīng)為同一條直線。當(dāng)噪聲越大時(shí),信號(hào)變動(dòng)程度也越大,在垂直方向之疊合軌跡也越粗,誤碼率也將增加。如下圖所示:
圖3
眼圖的水平方向?yàn)闀r(shí)間軸,代表信號(hào)到達(dá)的時(shí)間,抖動(dòng)將造成水平方向上軌跡變粗。眼圖的左右邊沿可以測(cè)量出信號(hào)的上升時(shí)間和下降時(shí)間。眼圖形狀類似于眼睛,當(dāng)眼睛張的越大時(shí),傳輸質(zhì)量越佳?;旧先粞蹐D的形狀呈現(xiàn)【瞇瞇眼】形狀時(shí),表示信號(hào)質(zhì)量極非常差。如下圖所示:
圖4
在信號(hào)量測(cè)中,眼圖的形成正如上所述:由多個(gè)差分信號(hào)運(yùn)算所累加而成。以SATA為例,其原理大致如下:
首先SATA 的信號(hào)pin角,大致上可分為TX+、TX-、RX+與RX-;由于SATA、SAS、PCI Express這類總線都是以差分信號(hào)來取代傳統(tǒng)的單端信號(hào)傳輸,TX 為發(fā)送端,RX為接收端,而+、-則為差分的成對(duì)信號(hào)。參考圖5(A)與圖5(B)的信號(hào)波形圖(以TX 為例),當(dāng)信號(hào)傳遞時(shí),即使因外界的噪聲干擾,也不用擔(dān)心信號(hào)會(huì)有誤判的情形發(fā)生,因?yàn)椴罘中盘?hào)的傳輸機(jī)制會(huì)將TX+與TX-作相減的運(yùn)算,如圖5(C)所示,如果有噪聲,也不會(huì)傳遞到芯片內(nèi)部,這樣就不會(huì)影響到正常的信號(hào)傳遞,從而提高噪聲容忍度。
圖5
而示波器在測(cè)量眼圖信號(hào)時(shí),透過自觸發(fā)點(diǎn)之后,將TX+ - TX-的信號(hào)累加至示波器上,如下圖所示,即獲得了眼圖。
圖 6
很多人在稱贊美女的時(shí)候,經(jīng)常會(huì)用【明眸皓齒】、【蜂腰美人】或【水蛇腰】來形容。其實(shí)在評(píng)判眼圖的質(zhì)量時(shí),這個(gè)標(biāo)準(zhǔn)也蠻適用的。這其實(shí)就可以當(dāng)作檢查眼圖是否完美的兩個(gè)重要準(zhǔn)則:
■【明眸皓齒】:眼睛要大,如果配合上有眼圖模板的話,那么以眼圖模板當(dāng)作瞳孔,則眼白(Margin)就必須要夠多。
■【蜂腰美人】:如圖7紅綠色圓圈中交叉的部分,必須要越小越好,最好是一個(gè)點(diǎn),就像蜂腰美人一樣,比較瘦小,因?yàn)檫@里代表的是抖動(dòng),如果太大就會(huì)造成誤碼率增加。抖動(dòng)越小則代表信號(hào)質(zhì)量越好,發(fā)生誤碼的機(jī)率越低。
圖 7
前面講到了眼圖模板,眼圖的測(cè)試主要是用來檢測(cè)高速串行傳輸?shù)男盘?hào)質(zhì)量,不論是SATA、PCI Express還是USB,標(biāo)準(zhǔn)都有提供眼圖模板的標(biāo)準(zhǔn)給工程師作為眼圖的測(cè)量準(zhǔn)則。如圖8所示,是USB2.0 TX的眼圖模板,所謂的眼圖模板主要是用在判斷眼圖是否符合規(guī)范的要求,圖8中ABCDEF6點(diǎn)所圍成的六邊形紅色區(qū)域以及GH以上、IJ一下區(qū)域代表所謂的【禁止區(qū)域】,如果眼圖有任何信號(hào)波形位進(jìn)入這些紅色區(qū)域,則表示信號(hào)傳輸不滿足協(xié)議規(guī)范的要求(如圖9綠色圓圈處)。
圖 8
圖 9
眼圖的判斷
以上說了那么多,現(xiàn)在就來看看眼圖到底如何來判斷。
首先,看是否【明眸】。眼圖是否夠大?是否有進(jìn)入內(nèi)模板?是否有超過上下限。
其次,看是都【蜂腰】。眼圖交叉點(diǎn)的部分,是否達(dá)到夠細(xì)?是否達(dá)到最小協(xié)議規(guī)范中抖動(dòng)的要求?
以上兩點(diǎn)需要同時(shí)滿足,才能說明眼圖符合設(shè)計(jì)要求。
歷史參考文檔:
薛定諤貓 與 建立保持時(shí)間
為什么會(huì)有建立時(shí)間(Setup Time)和保持時(shí)間(Hold Time)?
亞穩(wěn)態(tài)概述
亞穩(wěn)態(tài)分析
信號(hào)完整性設(shè)計(jì)方法
嚴(yán)格控制關(guān)鍵信號(hào)的 PCB 走線長(zhǎng)度
信號(hào)完整性問題主要是 PCB 走線過長(zhǎng)造成的。 如果在設(shè)計(jì)前期,我們能夠找出關(guān)鍵信號(hào),并對(duì)走線長(zhǎng)度進(jìn)行控制,就可以有效地抑制信號(hào)反射,保證信號(hào)質(zhì)量。所以我們需要研究器件的數(shù)據(jù)手冊(cè), 確定信號(hào)最快上升與下降時(shí)間,估算臨界走線長(zhǎng)度, 對(duì)于時(shí)鐘、高速數(shù)據(jù)流信號(hào)尤其要注意長(zhǎng)度控制。
高速信號(hào) PCB布線技巧
三種特殊走線技巧
合理規(guī)劃走線的拓?fù)浣Y(jié)構(gòu)
走線的拓?fù)浣Y(jié)構(gòu)是指一根走線的布線順序及布 線結(jié)構(gòu),如菊花鏈和星形分布等。同時(shí),需要采用 合適的匹配方式,如源端匹配、終端匹配等。我們 需要了解電路的設(shè)計(jì)原理,驅(qū)動(dòng)順序與信號(hào)本身特 點(diǎn),采用合適的拓?fù)渑c匹配方式。
高速信號(hào)走線規(guī)則
有效控制 PCB 特征阻抗
在多層線路板中,信號(hào)完整性性能良好的關(guān)鍵 是使它的特性阻抗在整條線路中保持恒定。目標(biāo)是 使所有線路的特性阻抗?jié)M足一個(gè)規(guī)定值,通常在 25 歐姆和 70 歐姆之間。所以在設(shè)計(jì)時(shí),就需要對(duì) PCB 走線特征阻抗進(jìn)行計(jì)算,確定合理的走線寬度與其 它設(shè)計(jì)參數(shù);在 PCB 加工時(shí),表明阻抗要求;PCB 加工后,需要采用儀器對(duì)特征阻抗進(jìn)行驗(yàn)證。
阻抗不匹配,信號(hào)反射疊加的過程
阻抗控制的走線細(xì)節(jié)舉例
特征阻抗那點(diǎn)事
設(shè)計(jì)仿真技術(shù)
在 PCB 設(shè)計(jì)過程中,采用軟件進(jìn)行仿真。在系 統(tǒng)設(shè)計(jì)時(shí),對(duì)模塊布置進(jìn)行仿真;在單板布局時(shí), 可以進(jìn)行前仿真,確定器件布局;在走線時(shí),進(jìn)行 后仿真,保證走線質(zhì)量。通過仿真,事先可以預(yù)測(cè) 到信號(hào)的設(shè)計(jì)質(zhì)量,及時(shí)調(diào)整設(shè)計(jì)策略,預(yù)先預(yù)防, 而不是事后補(bǔ)救。
其它可采用技術(shù)
在設(shè)計(jì)時(shí),需要從電路設(shè)計(jì)、布局、布線、電源系統(tǒng)等方面進(jìn)行考慮。如在電路設(shè)計(jì)時(shí),合理選 擇驅(qū)動(dòng)器件,盡量采用同步設(shè)計(jì),避免異步設(shè)計(jì), 高速信號(hào)采用差分信號(hào),為集成電路芯片添加去耦 電容;布局時(shí),注意數(shù)字與模擬信號(hào)分開,合理設(shè) 計(jì)單板的疊層,器件按照速度合理布局;布線時(shí),注意少打過孔,布線遵循 3W 原則;電源設(shè)計(jì)時(shí), 注意低阻抗連接,層疊遵循 20H 原則等。
3W原則
布局基本要領(lǐng)
高速信號(hào) PCB布線技巧
推薦閱讀:
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗(yàn)科技驅(qū)動(dòng)的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲(chǔ)能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測(cè)量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級(jí)分流器以及匹配的評(píng)估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
生產(chǎn)測(cè)試
聲表諧振器
聲傳感器
濕度傳感器
石英機(jī)械表
石英石危害
時(shí)間繼電器
時(shí)鐘IC
世強(qiáng)電訊
示波器
視頻IC
視頻監(jiān)控
收發(fā)器
手機(jī)開發(fā)
受話器
數(shù)字家庭
數(shù)字家庭
數(shù)字鎖相環(huán)
雙向可控硅
水泥電阻
絲印設(shè)備
伺服電機(jī)
速度傳感器
鎖相環(huán)
胎壓監(jiān)測(cè)
太陽能
太陽能電池
泰科源
鉭電容
碳膜電位器