教你如何掌握IC放大器中那些“去耦”、“接地”
發(fā)布時(shí)間:2019-05-09 責(zé)任編輯:lina
【導(dǎo)讀】就像我們?yōu)橄到y(tǒng)功耗、接地及信號(hào)回路找到合適配置時(shí),往往會(huì)引入一些干擾。在理解IC放大器的“去耦”、“接地”概念時(shí)也常常會(huì)被一些顯而易見的問題所愚弄。
就像我們?yōu)橄到y(tǒng)功耗、接地及信號(hào)回路找到合適配置時(shí),往往會(huì)引入一些干擾。在理解IC放大器的“去耦”、“接地”概念時(shí)也常常會(huì)被一些顯而易見的問題所愚弄。
下面為大家闡述一個(gè)一般性原則,之后我們?cè)俾懻撆c集成電路放大器相關(guān)的去耦與接地問題——
首先請(qǐng)思考:電流流向何處?
表面來看,這是一個(gè)顯而易見的問題。但提到電流時(shí),人們一般都會(huì)想到電流從某個(gè)地方“流出”,然后“流過”其他地方,卻忽視了電流如何流回源點(diǎn)的問題。在實(shí)際操作中,人們似乎認(rèn)為所有“接地”或“電源電壓”點(diǎn)都是相等的。但忽略了一個(gè)事實(shí) :這些點(diǎn)構(gòu)成電流在其中流動(dòng)并產(chǎn)生有限電壓,它們是導(dǎo)體網(wǎng)絡(luò)的一部分。
如果要進(jìn)行前瞻性規(guī)劃,我們必須得考慮電流的起點(diǎn)及返回點(diǎn),必須確定結(jié)果產(chǎn)生的電壓降的作用。而這又要求對(duì)去耦及接地電路的原理有一定的了解。然而在設(shè)計(jì)采用了集成電路時(shí),這樣的信息往往無從獲取與難以理解。
我們的IC放大器是非常常用的線性IC之一,但幸運(yùn)的是:就功率及接地問題而言,多數(shù)運(yùn)算放大器都可歸入少數(shù)類別。盡管系統(tǒng)配置可能帶來令人生畏的去耦及信號(hào)回路問題,但通過了解運(yùn)算放大器,我們可以找到解決更多此類問題的基本方法。
運(yùn)算放大器有四個(gè)引腳
一般的讀者在看過任何一本運(yùn)算放大器的課本之后,可以都會(huì)認(rèn)為:理想的運(yùn)算放大器應(yīng)該有三個(gè)引腳——一對(duì)差分輸入引腳和一個(gè)輸出引腳。如下圖所示:
圖1:常規(guī)“三端”運(yùn)算放大器
但如果你真的有了解基本原理,那么必然能看出事實(shí)并非如此。如果放大器有一個(gè)輸出電壓,那它必然以某個(gè)點(diǎn)為參考進(jìn)行測量。從理想運(yùn)算放大器來看,它擁有無限的共模抑制性能,因而可以排除輸入引腳作為參考點(diǎn)的可能。如此來看,必然還存在著第四個(gè)引腳。換個(gè)角度來看,如果放大器需要向負(fù)載提供輸出電流,則該電流必須從某個(gè)地方進(jìn)入放大器。而理想情況來看,輸入電流不流動(dòng),這樣一來結(jié)論仍然是“需要第四個(gè)引腳”。
一種常見的做法是在圖中指出第四個(gè)引腳為“接地”端。我們不討論什么是“接地”端,多數(shù)集成電路運(yùn)算放大器(包括很多模塊化運(yùn)算放大器)并不存在“接地”端。對(duì)于這些電路 ,第四個(gè)引腳是電源引腳中的一個(gè)或兩個(gè)。這種情況 下,人們傾向于將兩個(gè)電源電壓與接地歸在一起。電源線路確實(shí)會(huì)在放大哭帶寬范圍內(nèi),在所有頻率下產(chǎn)生較低的阻抗。然而,當(dāng)阻抗要求未得到滿足時(shí),眾多問題就會(huì)隨之而來,包括噪聲、瞬態(tài)響應(yīng)差,振蕩等問題。
差分至單端轉(zhuǎn)換
簡單運(yùn)算放大器的基本要求之一是“輸入端加載的全差分信號(hào)必須轉(zhuǎn)換成單端輸出信號(hào)”。單端指的是相對(duì)于經(jīng)常被忽視的第四個(gè)引腳而言的。這可能使問題復(fù)雜化。如下圖2所示:
圖2:簡化版“真實(shí)”運(yùn)算放大器
上圖所示信號(hào)流用于多種流行的集成電路系列中。雖然細(xì)節(jié)不盡相同,但基本信號(hào)路徑與101、741、748、777、4136、503、515等集成電路運(yùn)算放大器大致相同。電路首先將差分輸入電壓轉(zhuǎn)換成差分電流。該輸入級(jí)函數(shù)在圖2中表示為PNP晶體管。然后通過與負(fù)供電軌相連的電流鏡,將電流從差分轉(zhuǎn)換成單端形式。電流鏡像輸出驅(qū)動(dòng)差一個(gè)電壓放大器以及作為積分器連接的功率輸出級(jí)。該積分器控制著開環(huán)響應(yīng),其電容既可外加亦可內(nèi)置。關(guān)于上面這種簡化型號(hào)的說明大多都沒有突出積分器擁有一個(gè)差分輸入的事實(shí) 。由幾個(gè)基極發(fā)射極電壓提供正偏置,同相積分器輸入則以負(fù)電源作為參考 。
顯然,放大器輸出與負(fù)電源之間的大部分電壓差會(huì)出現(xiàn)在整個(gè)補(bǔ)償電容中。如果負(fù)電源電壓突然發(fā)生變化,積分器放大器將強(qiáng)制輸出隨之而變。當(dāng)整個(gè)放大器處于閉環(huán)配置時(shí),其輸入端產(chǎn)生的誤差信號(hào)將深度恢復(fù)輸出 ,但恢復(fù)程度受限于放大哭喊的壓擺率。結(jié)果就是,這類放大器可能擁有出色的低頻電源抑制性能,但負(fù)電源抑制卻存在較大限制。由于導(dǎo)致輸出恢復(fù)的是流程輸入端的反饋信號(hào),因此,對(duì)于頻率輸出恢復(fù)的是流程輸入端的反饋信號(hào)。因此,對(duì)于頻率超過閉環(huán)帶寬的信號(hào),負(fù)電源抑制比將接近0。即:高速高電平電路可以通過負(fù)電源線的公共阻抗與低電平電路“通信”。
Attention:此類放大器的問題與負(fù)電源端相關(guān)。雖然正電源抑制比也可能因頻率增加而下降,但其影響程度較輕。一般而言,正電源上的小瞬變只會(huì)對(duì)信號(hào)輸出產(chǎn)出輕微影響。這些靈敏度之間的差異可能使放大器瞬態(tài)響應(yīng)出現(xiàn)明顯不對(duì)稱現(xiàn)象。如果驅(qū)動(dòng)放大器的目的是在其額定負(fù)載范圍內(nèi)產(chǎn)生正電壓擺幅,則放大器將從正電源吸取電流脈沖。
這樣的脈沖可能導(dǎo)致電源電源瞬變,但正電源抑制將最大程度地降低對(duì)放大器輸出信號(hào)的。在與此相對(duì)的情況下,負(fù)輸出信號(hào)將從負(fù)電源中抽取電流。如果脈沖在總線上導(dǎo)致“毛刺”,則欠佳的負(fù)電源抑制性能將在放大器輸出端帶來類似的“毛刺”。雖然正脈沖測試可以得到放大器瞬態(tài)響應(yīng),但負(fù)脈沖測試實(shí)際上可以助您更好地了解電源負(fù)軌瞬態(tài)響應(yīng),而不是放大器響應(yīng)!
事實(shí)上,電源脈沖響應(yīng)本身并不是放大器上可能出現(xiàn)的東西。30或40厘米的電線可以充當(dāng)一下高Q電廠,從而給阻尼通常過高的電源響應(yīng)增加高頻成分。在放大器附近安裝一個(gè)去耦電容也不一定能解決問題,因?yàn)殡娫幢仨氃谀硞€(gè)地方去耦。如果去耦電流注過較長路徑 ,仍有可能產(chǎn)生不良毛刺。
圖3所示為負(fù)電源去耦的三種可能配置。在3a中,虛線表示通過去耦線路及接地線路的負(fù)信號(hào)電流路徑。如果負(fù)載“接地”及去耦“接地”在電源處相接,則接地線路上的毛刺類似于負(fù)電源總線上的毛刺。根據(jù)反饋及信號(hào)源的“接地”方式,去耦電容導(dǎo)致的有效干擾可能大于電容的設(shè)計(jì)抗干擾能力。
圖3a:無效負(fù)電源去耦
圖3b展示了如何利用去耦電容降低V形及接地總線的干擾。負(fù)載電流中的高頻成分被限制在一個(gè)不含接地路徑的環(huán)路中。如果電容的容量夠大、質(zhì)量符合要求,則可降低負(fù)電源上的毛刺而不干擾輸入或輸出信號(hào)路徑 。
圖3b:針對(duì)“接地”負(fù)載優(yōu)化的去耦負(fù)電源
如果負(fù)載情況復(fù)雜(如圖3c),則需要進(jìn)行更多的思考。如放大器驅(qū)動(dòng)的是流向虛擬地的負(fù)載,則實(shí)際負(fù)載電流不會(huì)返回接地。相反,該電源必然由形成虛擬地的放大器提供。
圖3c:針對(duì) “虛擬地”負(fù)載優(yōu)化的去耦負(fù)電源
在這種情況下,如果將第一放大器的負(fù)電源去耦至第二放大器的正電源,則會(huì)閉合快速信號(hào)電流環(huán)路而不干擾接地路徑或信號(hào)路徑 。當(dāng)然,為了避免干擾輸出基準(zhǔn)電壓源,必須為第二放大器提供從接地至V形總線的低阻抗路徑。理解去耦電路的關(guān)鍵在于認(rèn)清實(shí)際負(fù)載和信號(hào)電流的去向。而優(yōu)化電路的關(guān)鍵是在接地等信號(hào)路徑旁路這些電流。
考慮整個(gè)電路時(shí),通常會(huì)出現(xiàn)沖突。例如,多個(gè)放大器可能由同一電源驅(qū)動(dòng),而每個(gè)放大器又需要獨(dú)立的去耦電容??傮w而言,去耦電容全部呈并聯(lián) 狀態(tài)。然而,事實(shí) 上,互連電源的電廠及接地線路 會(huì)將這種看似無礙的配置轉(zhuǎn)換成一個(gè)復(fù)雜的 L-C 網(wǎng)絡(luò)。在處理快速信號(hào)波陣面的電路中,通過數(shù)厘米線纜并聯(lián)的去耦網(wǎng)絡(luò)通常意味著麻煩。
圖4:并聯(lián)去耦諧振阻尼
圖4展示了通過小電阻來降低 不良諧振電路 Q 值的方法。一般情況下,這些電阻是可以容許的,因?yàn)樗鼈冊(cè)谶\(yùn)算放大器電源端將不良高頻叮當(dāng)聲轉(zhuǎn)換成小阻尼信號(hào)。雖然剩余信號(hào)具有較多的低頻成分,但可以通過運(yùn)算放大器的電源抑制性能而予以處理。
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗(yàn)科技驅(qū)動(dòng)的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲(chǔ)能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級(jí)分流器以及匹配的評(píng)估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
生產(chǎn)測試
聲表諧振器
聲傳感器
濕度傳感器
石英機(jī)械表
石英石危害
時(shí)間繼電器
時(shí)鐘IC
世強(qiáng)電訊
示波器
視頻IC
視頻監(jiān)控
收發(fā)器
手機(jī)開發(fā)
受話器
數(shù)字家庭
數(shù)字家庭
數(shù)字鎖相環(huán)
雙向可控硅
水泥電阻
絲印設(shè)備
伺服電機(jī)
速度傳感器
鎖相環(huán)
胎壓監(jiān)測
太陽能
太陽能電池
泰科源
鉭電容
碳膜電位器