高速ADC輸入信號(hào)接口的挑戰(zhàn)與不同技術(shù)的需求
發(fā)布時(shí)間:2020-04-14 責(zé)任編輯:lina
【導(dǎo)讀】當(dāng)今的模數(shù)轉(zhuǎn)換器 (ADC) 采用了最新的技術(shù),以高精度及快速的采樣頻率對(duì)模擬信號(hào)進(jìn)行采集。數(shù)據(jù)轉(zhuǎn)換器的復(fù)雜性隨著采樣頻率及精度的提高而增加。高性能數(shù)據(jù)轉(zhuǎn)換器規(guī)格的設(shè)定必須遵循嚴(yán)格的輸入條件,以實(shí)現(xiàn)器件預(yù)期性能的最大化。
當(dāng)今的模數(shù)轉(zhuǎn)換器 (ADC) 采用了最新的技術(shù),以高精度及快速的采樣頻率對(duì)模擬信號(hào)進(jìn)行采集。數(shù)據(jù)轉(zhuǎn)換器的復(fù)雜性隨著采樣頻率及精度的提高而增加。高性能數(shù)據(jù)轉(zhuǎn)換器規(guī)格的設(shè)定必須遵循嚴(yán)格的輸入條件,以實(shí)現(xiàn)器件預(yù)期性能的最大化。一個(gè)頗具挑戰(zhàn)性的輸入條件是:對(duì)ADC輸入模擬信號(hào)進(jìn)行測(cè)量、驅(qū)動(dòng)和接口連接。本文將探討一些對(duì)于高速 ADC進(jìn)行有效接口連接的技術(shù),從而使ADC實(shí)現(xiàn)性能最佳化。
就有效輸入驅(qū)動(dòng)以維護(hù)信號(hào)完整性而言,已經(jīng)有許多好的應(yīng)用注釋以及文章發(fā)表。本文將探討有關(guān)輸入驅(qū)動(dòng)的新發(fā)展。
ADC 輸入架構(gòu)與驅(qū)動(dòng)器的選擇
ADC的模擬輸入配置隨著采樣精度和最大采樣頻率的變化而有所不同。在輸入階段,影響輸入驅(qū)動(dòng)器選擇的特征有:
1. 單端與差分
2. 高阻抗與低阻抗 (100W) (或是有緩沖與無(wú)緩沖)
單端與差分
大部分推動(dòng)采樣精度和采樣頻率達(dá)到極限的ADC采用的是差分輸入方式。差分輸入的優(yōu)勢(shì)在于降低偶次諧波和 EMI。一些差分輸入ADC具有IRS(輸入范圍選擇) 寄存器,其允許使用者通過(guò)將未使用的輸入連接到共模 (CM)A/D轉(zhuǎn)換參照的方式,以單端輸入來(lái)使用器件。
有緩沖與無(wú)緩沖
高采樣頻率ADC (》500 MSPS) 經(jīng)常要處理高頻模擬輸入信號(hào)。假定使用標(biāo)準(zhǔn)的 PCB板尺寸和軌跡長(zhǎng)度,如果這個(gè)高頻模擬信號(hào)沒(méi)有正常結(jié)束,又用處理射頻信號(hào)和電路板的方式加以處理,模擬信號(hào)就會(huì)衰退。這樣的高頻應(yīng)用得益于低阻抗 (50W單端或 100W差分) 模擬輸入,因此,大部分 UHF 和 VHF 電路為 50W系統(tǒng)。為了獲得較高的失真性能,通常使用差分輸入。由于嚴(yán)格的規(guī)范限制,以及受高頻的影響,高采樣率ADC通常不提供允許使用單端輸入的IRS 選項(xiàng)。原因是:采用 IRS 的ADC需要額外的電路才能轉(zhuǎn)換到滿量程(FSR),而這對(duì)于在高頻/高采樣率下的應(yīng)用卻并不可行。因此,這個(gè)等級(jí)的ADC需要高頻、低電阻 (100W差分)的輸入驅(qū)動(dòng)。使用低電阻輸入 ADC,模擬輸入在被應(yīng)用到用于轉(zhuǎn)換的采樣/保持 (S/H) 電路之前就已緩沖。所以,并不需要采用在非緩沖 ADC中使用的標(biāo)準(zhǔn)去耦電路 (串聯(lián)電阻R,并聯(lián)電容C)。在圖1的圖解中使用了一個(gè)非緩沖輸入的 ADC (ADC10080),這些去耦元件在圖中標(biāo)識(shí)為 R1、R2(18W) 及 C1 (25W)。
從單端到差分的轉(zhuǎn)換
中點(diǎn)接線變壓器
(Ruthroff 變壓器)
如前所述,驅(qū)動(dòng)差分 ADC 的輸入必須為差分形式。將單端輸入轉(zhuǎn)換為ADC 可用的差分信號(hào)需要使用一個(gè)中點(diǎn)接線變壓器,如圖1所示(在“差分輸入”虛線下可看出變壓器如何接到 ADC 輸入)。
差分輸入的共模電壓(CM)應(yīng)遵循 VCOM 電壓(在 ADC 上的輸出引腳),以便使 ADC 內(nèi)部的采樣保持電路正常工作。圖1中的電路允許通過(guò)將變壓器的中點(diǎn)接線連接到ADC的 VCOM 輸出來(lái)對(duì)輸入 CM 加以設(shè)定。
變壓器的較低截止頻率不允許低頻內(nèi)容被耦合進(jìn)來(lái)。因此,這種形式的耦合只可應(yīng)用于不需要 DC 以及低頻內(nèi)容的系統(tǒng)。除此之外,這個(gè)電路也承受了高頻變壓器的泄漏效應(yīng),限制了它的上限工作頻率。典型的變壓器有上限及下限工作頻率。較低頻率限制由初級(jí)電感決定。對(duì)于這個(gè)與 8 位轉(zhuǎn)換器一起使用的變壓器而言,如果不采用其它的增益校準(zhǔn)或調(diào)整方法,其工作的頻帶非常窄,受限在 1 MHz ~100MHz,其中,插入損耗變化小于 0.034dB (1 LSB)。
對(duì)于最大回波損耗(最小反射),許多較高速度的應(yīng)用要求對(duì)圖1中 J1 (輸入連接器)處的輸入阻抗進(jìn)行控制,并且要與連接到連接器的電纜特征阻抗相匹配。當(dāng)電纜的長(zhǎng)度超過(guò)所遇最短波長(zhǎng)的 1/20時(shí),這種要求尤為重要。只要變壓器回波損耗在頻率極值時(shí)性能沒(méi)有衰退,就有可能通過(guò)設(shè)置一個(gè)通過(guò)輸入的終端電阻 RT 來(lái)達(dá)成此目標(biāo)。這樣,輸入阻抗就會(huì)接近RT,原因在于變壓器回波損耗已增大,足以具有最小負(fù)載效應(yīng)。在較高的頻率下,由于變壓器回波損耗的減少,使用這種類型的變壓器配置會(huì)使控制輸入端更加困難。而這正是不平衡變壓器的優(yōu)勢(shì)所在。
不平衡變壓器
(Guanella變壓器)
另一個(gè)進(jìn)行單端到差分轉(zhuǎn)換的方法是使用不平衡變壓器,如圖2所示。
與圖1相比,這種方式具有下述優(yōu)點(diǎn)及缺點(diǎn):
優(yōu)點(diǎn):
1. 較高的工作頻率
2. 對(duì)于寬帶應(yīng)用而言,有較高的回波損耗
3. 較佳的增益與相位平衡
缺點(diǎn):
1. 無(wú)法設(shè)定共模電壓
2. 無(wú)法提供電壓增益
與圖1的中點(diǎn)接線變壓器或 Ruthroff 變壓器相比,不平衡配置有著更高的工作頻率。然而,采用不平衡配置后,因?yàn)闊o(wú)法設(shè)定共模電壓水平,ADC 輸入必須為 AC 耦合電壓。以ADC08D1500為例,它是一個(gè) 8 位、1500MSPS 的轉(zhuǎn)換器,如果在 AC耦合的模式下工作,就會(huì)通過(guò)內(nèi)部電阻自動(dòng)將其輸入端偏置到適當(dāng)?shù)墓材k妷褐?。如果ADC的 VCMO 輸出接地,就會(huì)以 AC 耦合模式運(yùn)行。
如圖2所示,使用 AC 耦合電容 (4.7nF),輸入耦合電路的-3dB頻率大約為 677 KHz (=1/(2pReqCeq),其中,Req=100W,Ceq=4.7nF/2=2.35nF)。這個(gè) 100W的等效電阻是耦合電容器 (RT2與 ADC 的 100W輸入并聯(lián),總共 50W) 右邊的差分負(fù)載與介于不平衡變壓器引腳1 和引腳3(50W)間差分阻抗的串聯(lián)組合。
采用圖2的電路,J1終止于 50W 左右,并且假定所驅(qū)動(dòng)的ADC具有100W的差分輸入終端(如 ADC08D1500)。與 100W ADC輸入阻抗并聯(lián)的 RT2為 50W,這是從 J1 到接地的輸入阻抗。此輸入阻抗一直保持一定的頻率,從而使不平衡變壓器發(fā)揮變壓器的作用。超過(guò)這個(gè)基于特殊不平衡變壓器及其核心特征、線圈間電容,以及其它因數(shù)的頻率范圍,輸入阻抗就會(huì)偏離這個(gè)值,并且輸入反射會(huì)導(dǎo)致回波損耗減少。大部分不平衡變壓器的產(chǎn)品手冊(cè)都列出了幾個(gè)頻點(diǎn)的回波損耗與上限和下限工作頻率。
圖3顯示了一個(gè)中點(diǎn)接線變壓器 (TC4-14) 以及一個(gè)不平衡變壓器 (TC1-1-13M) 的輸入回波損耗,并進(jìn)行了簡(jiǎn)單的比較。
由圖3中可以看出,中點(diǎn)接線變壓器的回波損耗在 700MHz 以下與 1.3GHz 以上時(shí),下降得十分迅速,而不平衡變壓器則具有一定的高出數(shù) MHz 的回波損耗 (》 10dB),并且在頻率到達(dá)約 2.6GHz 左右時(shí)才開(kāi)始下降。這是不平衡變壓器相對(duì)于中點(diǎn)接線變壓器的優(yōu)點(diǎn)。在較高頻率減少的回波損耗會(huì)造成一種不匹配的狀態(tài),并且產(chǎn)生較高的反射能量,這會(huì)在采集信號(hào)中形成不想要的諧波,并且降低系統(tǒng)的 ENOB 性能。
回波損耗 (RL)與 二端口輸入阻抗相關(guān),如式1如示:
RL= 20 Log | (Zin+50)/ (Zin-50)| (1)
舉例來(lái)說(shuō),10dB 的 RL 與96W 或 26W的輸入阻抗相符合 (根據(jù)式1中商的符號(hào)而定)。阻抗不連續(xù)時(shí)的反射波(圖2中的 J1)在源端出來(lái)另一個(gè)反射之后將會(huì)抵達(dá) Rs1 (假定來(lái)源與傳輸線并沒(méi)有完美匹配)。往返時(shí)間為 l/n,其中,l為電纜長(zhǎng)度,n為通過(guò)傳輸線介質(zhì)的波速。構(gòu)成輸入信號(hào)的不同頻率元件,在遇到此往返延遲并且加上原來(lái)的入射波之后會(huì)回到中斷處,從而形成最終的信號(hào)。對(duì)于往返延遲 (2l/n),l為一個(gè)重要的諧波(大約是周期 T 的 1/10),其最終的波形將會(huì)失真。從數(shù)學(xué)上講,這里的T滿足了 T ≤ (20 l/n) 的諧波要求。原因是,對(duì)于較短周期的諧波,入射以及反射波會(huì)合成(在時(shí)間上)交迭形式,這會(huì)造成波形的改變。這正是在 ENOB 上降低的原因,因?yàn)檫@個(gè)改變的波形將會(huì)增加總諧波失真 (THD) 的失真項(xiàng),從而產(chǎn)生較低的 ENOB。
為了平衡非平衡功能,變壓器的初級(jí)與次級(jí)總會(huì)保持1:1 的比例,因此,此配置不能提供任何電壓增益。
有源單端到差分的轉(zhuǎn)換
如前所述,變壓器可以被用作轉(zhuǎn)換器,然而它們?cè)趯拵У膽?yīng)用上有很大的缺點(diǎn),并且在這些應(yīng)用中,它們不會(huì)在其操作頻率區(qū)域中包括 DC 和低頻?;谶@個(gè)原因,半導(dǎo)體制造商已經(jīng)導(dǎo)入了有源器件來(lái)執(zhí)行這項(xiàng)功能,以彌補(bǔ)變壓器耦合結(jié)構(gòu)的缺點(diǎn)。
LMH6555 是專門(mén)設(shè)計(jì)用來(lái)驅(qū)動(dòng)如圖4顯示為 0.8Vpp的ADC的 100W差分輸入,并且提供一個(gè)到終端電纜的固定 50W的輸入阻抗(未顯示于圖4中),以達(dá)到最高的回波損耗。單端到差分轉(zhuǎn)換器會(huì)將頻率范圍從DC一直擴(kuò)展到1.2GHz(此為 LMH6555 的 -3dB 頻寬限制)。通過(guò)將ADC的 VCMO連接到 LMH6555 的 VCM_REF 輸入,可以保持精確的輸出共模電壓控制。利用這樣的結(jié)構(gòu),可以獲得全信號(hào)頻譜,而共??刂苿t可以由 LMH6555 自動(dòng)實(shí)現(xiàn)。圖4中所示的緩沖器 (LMV321) 用來(lái)提高ADC的 VCMO 引腳所流出的電流,以使得對(duì)于 VCM_REF輸入而言有適當(dāng)?shù)尿?qū)動(dòng)能力。是否需要緩沖器取決于ADC的電流輸出能力?! ?/span>
LMH6555 的增益(在Vin+下的差分輸出到單端或取決于所驅(qū)動(dòng)輸入的Vin+)確定在 4.8V/V,其配置如圖4所示,其中,Rs1=Rs2=50W。對(duì)于輸入信號(hào)在振幅上較大的情形,LMH6555 插入增益可以通過(guò)增加 Rs2和 Rs1的值來(lái)降低。這兩個(gè)電阻應(yīng)該總是相等,以保持對(duì)于低輸出偏移的輸入平衡。圖5所示例子中,位于 50W電纜接收端的 LMH6555 的增益通過(guò) Rx 和 Ry降低。通過(guò)選擇組件值,LMH6555 電路(J1)的輸入阻抗被保持在50W,以使阻抗匹配。兩個(gè) LMH6555具有 100W的到地等效阻抗,各個(gè)組成值都被顯示,以用來(lái)維持低輸出偏移電壓。LMH6555的輸入/輸出擺幅關(guān)系如式2所示:
Vout (Vpp) = Vin (Vpp) * [ RF/ (2Rs+Rin_diff)] (2)
其中,RF= 430W,Rin_diff=78W,都是LMH6555 特定的值。
Rs是等效電阻,使 LMH6555 的輸入接地(假定它們相等)。增加 Rs會(huì)降低增益。重新整理式2,允許使用者決定 Rs的值,可以確定對(duì)于一個(gè)給定 Vin (Vpp) 的全ADC的輸入擺幅,如式3所示:
Rs=Vin (Vpp) * 268.8 - 39 (3)
LMH6555的等效輸入電阻通過(guò) Rs被增加到100W(由式3計(jì)算得出),因此,0.52Vpp輸入會(huì)導(dǎo)致ADC輸入恰好為 0.8Vpp,而J1的等效輸入則維持在 50W。
LMH6555將維持低噪聲 (參照19nV/RtHz輸出的平帶),并與它輸入的Rs無(wú)關(guān)。這是因?yàn)?LMH6555 的輸入架構(gòu)由等效輸入噪聲電壓決定,并且獨(dú)立于源電阻。
ADC要求差分輸入的共模電壓(在 +/-50mV內(nèi))非常接近它所產(chǎn)生的 VCMO 參考輸出。這是采用1.9V供電電壓的一個(gè)結(jié)果,因?yàn)閾p失的供電電壓降低了ADC內(nèi)部的電壓余量。如果未能保持此共模操作,ADC的全失真性能將會(huì)迅速惡化。
除了這種共?,F(xiàn)象外,ADC兩個(gè)輸入端的任何增益和相位不平衡都會(huì)導(dǎo)致獲取錯(cuò)誤信號(hào)。舉例來(lái)說(shuō),一個(gè) 100MHz的方波將會(huì)在它的尖峰值有 1.5% 的錯(cuò)誤。8 位數(shù)據(jù)采集具有全尺度 0.39% 的 LSB,并且不平衡變壓器等效于3.8LSB。所以,將增益和相位不平衡最小化是非常必要的。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)聯(lián)系小編進(jìn)行處理。
特別推薦
- AMTS 2025展位預(yù)訂正式開(kāi)啟——體驗(yàn)科技驅(qū)動(dòng)的未來(lái)汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽(yáng)能和儲(chǔ)能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測(cè)量
- 貿(mào)澤開(kāi)售Nordic Semiconductor nRF9151-DK開(kāi)發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級(jí)分流器以及匹配的評(píng)估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開(kāi)啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書(shū)下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索
單向可控硅
刀開(kāi)關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動(dòng)車
電動(dòng)工具
電動(dòng)汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖