超級電容的這些關(guān)鍵參數(shù)你都了解嗎?
發(fā)布時(shí)間:2019-03-06 責(zé)任編輯:xueqi
【導(dǎo)讀】超級電容器 (Supercapacitor)被定名為“超級(Super)”,似乎給人感覺“比一般電容更強(qiáng)、更有成效”,其實(shí)它也有“弱點(diǎn)”。所以工程師使用超級電容器之前,了解其弱項(xiàng),有針對性地進(jìn)行選型或電路設(shè)計(jì),會(huì)令產(chǎn)品開發(fā)事半功倍。
漏電流的概念
能夠讓超級電容器在特定電壓下保持“已充電”狀態(tài)下所需的電流量稱為“漏電流”(LeakageCurrent)。充電電流隨著時(shí)間的推移而減小,并且隨著時(shí)間的推移變得穩(wěn)定,最后其穩(wěn)態(tài)電流就是“漏電流”。
圖1中顯示了KEMET公司“FC系列”產(chǎn)品在室溫下的漏電流特性和測量電路。當(dāng)超級電容器充電時(shí),存在穩(wěn)定的寄生電流(Parasitic Current)。超級電容器通過離子“吸收”和“釋放”造成充電,并且當(dāng)離子試圖到達(dá)活性炭的細(xì)孔內(nèi)部時(shí),充電開始時(shí)的寄生電流很高。該初始電流稱為“吸收電流”。該充電電流隨著時(shí)間的推移而減小,并且隨著時(shí)間的推移變得穩(wěn)定。在開始施加電壓30分鐘后的主電流分量是吸收電流。當(dāng)吸收電流減小時(shí),漏電流成為主要成分。
圖1:室溫下測量電路的漏電流特性
由于超級電容器擁有較高等效串聯(lián)電阻(ESR),因此連接到電源時(shí),其高內(nèi)阻會(huì)使高電流流動(dòng)時(shí)電壓降增加。這意味著它在高需求期間無法輸出足夠的能量,所以普遍用于低壓應(yīng)用。換言之,超級電容器只在細(xì)電流的環(huán)境下來作充電,所以“漏電流”是線路設(shè)計(jì)中不容輕視一個(gè)因素。
漏電流的計(jì)算
除了部份生產(chǎn)商直接提供參數(shù)值外,“漏電流值”可通過向超級電容器施加電壓直至特定時(shí)間后測量電阻器兩端的電壓,再根據(jù)以下簡單方程計(jì)算便能得出。
以KEMET公司的“FG系列”產(chǎn)品為例,規(guī)格書上提供了建議的串聯(lián)電阻及電源以協(xié)助工程師的實(shí)驗(yàn)測試。
(注:電容器施加電壓前需將兩個(gè)端子短路將其放電,所需時(shí)間應(yīng)參考規(guī)格書上的建議或更長時(shí)間)
自放電特性
當(dāng)充電電源與超級電容器斷開后,由于其高內(nèi)阻而開始失去電荷,這被稱為自放電(Self-Discharge)特性。在無負(fù)載條件的一段時(shí)間后,充電電容器中的電壓降,每兩周可能造成5-60%的電壓損失。實(shí)驗(yàn)表明自放電率與各種參數(shù)相關(guān)——如溫度、充電持續(xù)時(shí)間和放電時(shí)間。圖2顯示了KEMET公司的FC系列超級電容器的自放電特性。
圖2:KEMET公司FC系列超級電容器的自放電特性
自放電電流的計(jì)算
通過將充電電壓直接連接于電容器的兩極(即電源和超級電容器之間沒有電阻器)作長時(shí)間充電,例如24小時(shí),然后斷電,測量引腳到引腳間電壓,得出時(shí)間與終端電壓的關(guān)系(該試驗(yàn)應(yīng)在環(huán)境溫度為25℃或更低,相對濕度為70%RH或更低的環(huán)境中進(jìn)行),自放電電流可根據(jù)此特性曲線利用如下方程計(jì)算出。
自放電電流
當(dāng)中, C 是電容值 Capacitance (F)
V0是某時(shí)段起始終端電壓(V)
V1 是某時(shí)段最后終端電壓(V)
Vdrop 是因電容內(nèi)阻DCR的電壓降(V)
T 是某設(shè)定時(shí)段 (sec)
例如計(jì)算FC0H105ZFTBR44-SS的自放電電流:
圖3:FC0H105ZFTBR44-SS自放電特性
超級電容器選型參數(shù)
在選料方面,工程師通過了解以下超級電容器的電氣特性及其參數(shù),可以讓選料更有效率。
電容值及額定電壓
由于超級電容器具有高電容,因此普遍應(yīng)用于備用或峰值功率的能量供應(yīng)設(shè)備,但與電池不同,能量的供應(yīng)是依賴電容器的放電,因此放電時(shí)間越久,電壓值也會(huì)隨之下降。由于超級電容器包含復(fù)雜的等效電路,工程師可根據(jù)以下的公式作簡單的計(jì)算,以了解自己需要多大電容值。
當(dāng)中 V80% = 最大電壓的80%;
V40%= 最大電壓的40%;
t1= 達(dá)到V80%的時(shí)間;
t2= 達(dá)到V40%的時(shí)間;
Id = 放電電流 (穩(wěn)定不變狀態(tài))
想了解一般市場上超級電容產(chǎn)品“電容值”及“額定電壓”的可選范圍,可在Digi-Key 網(wǎng)站中查詢,相關(guān)數(shù)值會(huì)在產(chǎn)品的特性選項(xiàng)中顯示,如下圖4所示。
圖4:超級電容器的電容及額定電壓篩選列表
ESR (等效串聯(lián)電阻)
電容器ESR 是另一個(gè)影響放電特性的重要參數(shù)之一。超級電容器的電壓會(huì)根據(jù)放電電流而下降。由于內(nèi)阻(ESR)的存在,電壓也成比例地下降。這些電壓降會(huì)影響輸出,特別是當(dāng)電容器用于高放電電流和降低電壓時(shí)。因此,考慮到電壓降,有必要計(jì)算所需的特性??赏ㄟ^以下公式計(jì)算。
其中:阻值(不變)=R
放電時(shí)間=t
放電電壓=Vc
電容器電壓降=Vt
電容值 = C
圖5:電阻值不變時(shí)放電時(shí)間與電容器電壓降關(guān)系圖
想知道可以選擇的超級電容器的ESR范圍,Digi-Key 網(wǎng)站里中的特性選項(xiàng)也有列示,如下圖6所示。
圖6:超級電容器的ESR (等效串聯(lián)電阻)篩選列表
特殊應(yīng)用的選料
對于只需少量電荷存儲(chǔ)而對空間敏感的應(yīng)用,建議使用低容值及貼片型產(chǎn)品。例如以下Panasonic公司的EC-RG0V105V的19mm貼片超級電容器,提供3.3V微電路低壓的備用電量,適用于微處理器緊急而短暫的微電量供電應(yīng)用。
圖7:Panasonic 公司的EC-RG0V105V
或例如需要較低ESR 而應(yīng)用于高電壓的場景,如Cornell Dubilier Electronics (CDE) 公司的EDLRG105H3R6C,這種預(yù)設(shè)通孔端接硬幣型封裝元件,能提供高電容值,可作為集成電路電壓備份,也可用于從電池提供初始電源,它們可永遠(yuǎn)不需要更換。
圖8:Cornell Dubilier Electronics (CDE) 公司的EDLRG105H3R6C
本文小結(jié)
超級電容器廣泛用于備份應(yīng)用,使得在斷開系統(tǒng)電源時(shí)有足夠供電時(shí)間讓電子設(shè)備電路作出緊急操作。但人們很容易將自放電電流與漏電流的概念相混淆。漏電流是電容器“連接”充電源時(shí)使電容器保持“已充電”狀態(tài)下的穩(wěn)態(tài)電流,而自放電是電容器“斷電”后在負(fù)載下的漏電,使電容器失去電能。了解兩者差異及其重要性,工程師便能在電路設(shè)計(jì)上作出正確的應(yīng)對選擇。
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗(yàn)科技驅(qū)動(dòng)的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲(chǔ)能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級分流器以及匹配的評估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索