你的位置:首頁 > 電路保護 > 正文

設計寬帶模擬電壓和電流表

發(fā)布時間:2023-05-06 責任編輯:lina

【導讀】在數(shù)字儀表現(xiàn)在如此廣泛使用的情況下提供純模擬儀表可能會令人驚訝。然而,眾所周知,數(shù)字儀表在模數(shù)轉換器(ADC)之前具有模擬電路。頻率從低于 20 Hz 到 200 kHz 的寬帶模擬電壓表在過去已被廣泛使用,并且仍然非常有用。



在數(shù)字儀表現(xiàn)在如此廣泛使用的情況下提供純模擬儀表可能會令人驚訝。然而,眾所周知,數(shù)字儀表在模數(shù)轉換器(ADC)之前具有模擬電路。頻率從低于 20 Hz 到 200 kHz 的寬帶模擬電壓表在過去已被廣泛使用,并且仍然非常有用。

寬帶模擬儀表的主要技術指標

使用現(xiàn)代運算放大器(op amps),我們的模擬儀表的設計可以大大簡化。此設計使用價格合理的組件提供 20 Hz 至 1 MHz(10 Hz 時為 -1 dB)的平坦帶寬。 

在接地端插入0.1 Ω電阻不會顯著降低電流的電路中,增加測量電流的能力并不難。如果儀表是電池供電的或安全等級 2 結構,則接地連接不必是實際接地。

六個電壓量程分別為 1、10、100 mV 和 1、10、100 V 滿量程,而四個電流量程分別為 10、100 mA 和 1、10 A 滿量程。該設計包含一個寬帶峰值檢測器,可以切換其靈敏度以讀取正弦波信號的峰值電壓或均方根 (RMS)電壓。

可以插入外部濾波器以提供特殊的頻率響應。此功能還允許將儀表用作兩個具有切換可變增益的獨立放大器。 

該儀器將使用兩節(jié) 9 V 電池或一個 9-0-9 V 電源裝置供電。每個電池的電流消耗低于 25 mA(沒有任何發(fā)光二極管 (LED)指示器),因此可以預測較長的使用壽命。

模擬儀表項目——一般說明

儀器框圖如圖1所示。


設計寬帶模擬電壓和電流表
圖 1.寬帶模擬儀表框圖。


輸入衰減器/電流模式選擇器是必需的,因為我們要測量高達 100 V 的電壓,并且它們不能直接應用于放大器。選擇電流模式時,沒有開關觸點與電流檢測電阻器串聯(lián),從而消除了潛在的誤差源。付出的小代價是電流模式操作需要一個單獨的連接器。

使用兩個運算放大器達到增益

放大器需要大約 1000 (60 dB) 的增益才能為 1 mV 輸入提供滿量程讀數(shù)。這是通過使用LM4562中的兩個運算放大器實現(xiàn)的,每個運算放大器的增益為 31.62。LM4562 實際上用于高保真前置放大器,因此它具有低噪聲和低失真以及寬帶寬。失調電壓不是很熱,但在本應用中可以克服。 

由于有兩個放大器級,因此很容易提供連接器和開關,以便可以在兩個放大器之間插入其他電路,如果在第二個放大器的輸出端添加另一個連接器,它們也可以用作獨立放大器。

選擇您的檢測器:半波、“真有效值”和全波峰值

必須就提供的檢測器類型做出重要決定,以將放大信號轉換為直流電,以便操作數(shù)字顯示器或指針式儀器。簡單的檢測器是半波平均型,它告訴我們很少關于信號的信息,并且可能在未檢測到的半周期中隱藏顯著的電壓偏移。 

在復雜度的另一端是“真 RMS”檢測器,標記為“真”以區(qū)別于平均檢測器,后者的增益已被調整以讀取波信號的 RMS 值,而不是所有其他信號的 RMS 值。如果您想知道信號的 RMS 值,這很好,但價格合理的設備是 AD736,它的頻率限制為 200 kHz,而放大器的工作頻率高達 1 MHz 或更高。 

第三種類型的檢測器是全波峰值檢測器,它可以以合理的價格構建。通常需要測量信號的峰值,因為它可能表明信號鏈中的某些部分過載和削峰。只要波形沒有明顯削波,通過將峰值除以 1.4 或乘以 0.7 也很容易找到正弦波信號(即使失真高達 10%)的 RMS 值。這很容易安排,因為它需要一個 3 dB 衰減器才能接通。 

另一個簡單的衰減器在量程開關的 20 dB(10 倍)步長之間進行插值,這使得指針式儀器上所有高于 0.5 mV 的指示都位于刻度的上半部分。兩種衰減器都可以應用。

搜索已發(fā)布的工作頻率高達 1 MHz 的全波峰值檢測器被證明是徒勞的,但通過合并來自兩個不合適的檢測器的技術,找到了一個解決方案,使用另一個 LM4562 和兩個 RF 雙極晶體管 BF140。當然也可以使用其他具有類似或更好特性的三極管,但不適合BC547/847等通用三極管。

項目的電路設計方面

對于這個實驗,塊是單獨描述的,它們的原理圖(放大器除外)使用雙運算放大器和 2 極開關,因此,將它們分開會造成混淆。如果在單個頁面上顯示,整個原理圖太大而無法辨認。運算放大器的電源連接僅顯示為 V+ 和 V–,在電源模塊中也顯示為避免使用過多的長線。

輸入衰減器和電流模式開關

輸入衰減器和電流模式開關的原理圖如圖 2 所示。


設計寬帶模擬電壓和電流表
圖 2.輸入衰減器和電流模式開關。 


開關顯示在靈敏度位置。從較低位置開始順時針移動,開關步長為電流模式 (10 mA)、100 V、10 V 和 1 V。

電流傳感器電阻器(以及項目中使用的所有電阻器,除非另有說明)應具有 ±1% 的容差,因此它不是一個便宜的組件,但可以負擔得起。另一種方法是并聯(lián)使用一個 0.15 Ω 電阻器和另一個值,選擇接近 0.1 Ω。除非金屬外殼,否則不應繞線,否則電感可能會在高頻時引入誤差:100 nH 在 1 MHz 時為 628 mΩ。 

請注意,電流檢測電阻器在輸入連接器兩端連接得盡可能近,以免引入額外電阻。同理也沒有串聯(lián)隔直電容。如果使用額定功率為 1 W 或更高的組件,任何小于 10 A 的直流組件都不會引起問題。

如果使用更高的直流電壓,C2 應該是額定值為 250 V 或更高的聚酯薄膜電容器。

微調電容器用于調整衰減以使其在高頻下正確。這些值對我有用,但電容非常依賴于結構,因此您可能需要不同的值或配置。

和第二放大器和范圍開關

原理圖如圖 3 所示。 


設計寬帶模擬電壓和電流表
圖 3.和第二個放大器和范圍開關。


開關的布置使得沒有未使用的電阻連接到信號電路;它們附著在地面上。下一節(jié)將介紹 3 /10/13 dB 衰減器和“外部濾波器”的切換。

開關顯示在 1 V 位置。每一步改變每個開關極點上 10 dB 的增益,給出 20 dB 步長(10 次)。

反饋電阻器 R10 和 R16 的低值是獲得寬帶寬的關鍵。它們需要盡可能接近 2.2 k Ω,這可能意味著要從多個組件中進行選擇。 

R5 和 R10 可以是 E96 系列值 71.5 Ω 或 82 Ω || 560 Ω(|| 表示“并聯(lián)”)。R6 和 R11 為 180 Ω || 3.3 千歐。R7 和 R12 為 820 Ω || 10 千歐。其他組合顯然是可能的。此外,R8 和 R13 可以為 220 kΩ。 

有必要盡可能接近所需值,因為儀器的精度取決于它。應盡可能避免使用預置電阻,或使用優(yōu)質元件;否則,校準穩(wěn)定性將受到影響。 

請注意,使用 2.2 kΩ 和 220 kΩ 電阻器進行反饋增益設置會產(chǎn)生增益為 1.01 (0.086 dB) 的同相放大器,該增益足夠接近 1。 

附加衰減器和外部濾波器連接器

3 dB(峰值到 RMS 正弦波)和 10 dB(刻度放大器)衰減器以及外部濾波器開關如圖 4 所示。 


設計寬帶模擬電壓和電流表

圖 4. 3/10/13 dB 衰減器和外部濾波器連接器圖 [單擊圖像放大]。


和以前一樣,有必要測量電阻器并選擇接近所需值的電阻器。在這種情況下,可以使用 E12 值,但代價是為 -13 dB 網(wǎng)絡增加一個電阻器。 

檢查 E12 系列電阻器提供所需衰減的能力非常有用。表 1 顯示了結果。 


表 1.作為衰減比函數(shù)的誤差。

衰減
分貝

衰減比

上臂電阻

下臂電阻

比率
下/(下+上)

錯誤 %

誤差分貝

3個

0.7071

3.3k

8.2k

0.7130

-0.84

-0.062

10

0.3162

3.9k

1.8k

0.3158

0.14

0.012

13

0.2236

13.5k

3.9k

0.2241

-0.24

0.021

3分貝修復

0.7071

3.382k

8.2k

0.7080

-0.12

-0.011


使用測量值電阻器,可以通過添加一個低值電阻器與任何太低的電阻器串聯(lián)來化誤差。例如,如果 3 dB 的電阻恰好是 3.3 kΩ 和 8.2 kΩ,則可以通過添加與 3.3 kΩ 串聯(lián)的 82 Ω 來修復誤差。

在該網(wǎng)絡中使用撥動開關非常方便,當然也可以使用撥動開關或旋轉開關。

峰值檢測器和儀表 

峰值檢測器如圖 5 所示。


設計寬帶模擬電壓和電流表
圖 5. 顯示峰值檢測器的圖表 [單擊圖像放大]。


它具有確保寬帶寬的三個功能: 

? 這些電路中的電阻值遠低于通常情況
? 級使用 肖特基二極管
? 兩個射極跟隨器用于化第二級輸出端的負載

BAT54二極管可以用BAT85代替。如果量程開關設置不正確,D3 可保護儀表免受過大電流的影響。 

原型中使用的BF240設備可以替換為具有非常相似特性的其他設備。雖然它是一個舊設備,但它仍然可用并用于 FM 無線電 RF 階段,因此用于相同服務的其他設備可能也適用。請記住, BC547和2N3904等通用設備不適用。

此外,R23和R26可以由兩個1k電阻組成,R32也可以由10k和56k電阻并聯(lián)組成。其值的選擇是為了使預置電阻器調整到在 1 kHz 時以 1 V RMS 輸入在儀表上讀取 1 V 并應用 3 dB 衰減器,應該在其軌道的一半左右。 

可以連接一個數(shù)字顯示器來代替 R32、RV1 和儀表 M。

電源

電源電路如圖 6 所示。


設計寬帶模擬電壓和電流表
圖 6. 顯示電源的圖表。


100 nF 電容器應盡可能靠近走線電源側的 IC 引腳安裝。如果走線先到 IC 引腳再到電容,就會有不需要的電感與電容串聯(lián),用 100 nF 的電容諧振不需要太多電感。

寬帶模擬儀表項目的性能

除非合格(例如,通過“取決于布局”),否則數(shù)字基于原型的測量值。

? 輸入電阻(所有電壓范圍): 1 MΩ ±1%

? 輸入電容: 20 pF(取決于布局)

? 頻率響應:從 20 Hz 到 1 MHz 平坦:10 Hz 和 1.2 MHz 時為 -1 dB。

? 電壓范圍: 1–10–100 mV–1–10–100 V;精度取決于量程開關和衰減器電阻與其正確值的接近程度。

? 直流輸出:在電壓輸入端施加 1 kHz 時的 1 V RMS,范圍開關設置為 1 V,電路中有 3 dB 衰減器,R29 和 R30 連接點的直流輸出電壓應在 0.95 范圍內V 到 1.05 V。如果不是,請稍微調整 R16 的值(不要糾正大的錯誤)。

? 電流范圍: 10–100 mA –1 A。精度取決于范圍切換的精度以及電流檢測電阻器 R1 與正確值的接近程度。

? 直流輸出:在電流輸入端施加 1 kHz 時的 1 A RMS,范圍開關設置為 100 mV,電路中有 3 dB 衰減器,R29 和 R30 連接點的直流輸出電壓應在 0.95 范圍內V 到 1.05 V。如果不是,請稍微調整 R1 的值(不要糾正大的錯誤)。

您可以通過使用帶有 8 Ω ±1% 電阻器(僅耗散 0.125 W,因此 ? W 部分是可以的)與輸出和電流輸入串聯(lián)的音頻放大器來產(chǎn)生 1 A。調整輸入信號電平以在 8 Ω 電阻器上獲得 8 V RMS。

每個范圍設置的頻率響應如圖 7、8、9 和 10 所示。 


設計寬帶模擬電壓和電流表
圖 7. 1 V 范圍內 1 V 輸入的頻率響應 [單擊圖像放大]。



設計寬帶模擬電壓和電流表

圖 8. 100 mV 范圍內 100 mV 輸入的頻率響應 [單擊圖像放大]。 

設計寬帶模擬電壓和電流表
圖 9. 10 mV 范圍內 10 mV 輸入的頻率響應 [點擊圖片放大] 


設計寬帶模擬電壓和電流表

圖 10. 1 mV 范圍內 1 mV 輸入的頻率響應 [單擊圖像放大]。


1.2 MHz 處的響應超出掃描儀的范圍,因此使用信號發(fā)生器對其進行測量。在此范圍內,由于小輸入和高增益,走線上會出現(xiàn)少量噪聲。圖 11 顯示了電流表在 100 mA 時的響應。


設計寬帶模擬電壓和電流表
圖 11. 電流表在 100 mA 時的響應 [點擊圖片放大]。


可選的外部過濾器

外部濾波器的輸入電阻應為 10 kΩ 或更大,輸出電阻應為 1 kΩ 或更小。



免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯(lián)系小編進行處理。


推薦閱讀:

如何設計寬輸入電壓范圍、雙通道USB端口充電器?

使用模擬乘法器的同步解調與基于開關的乘法器

多電壓SoC電源設計技術

BUCK-BOOST 拓撲電源原理及工作過程解析

DSP 中數(shù)字下變頻的基礎知識



特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉