你的位置:首頁 > EMC安規(guī) > 正文

小功率反激電源EMI抑制方法

發(fā)布時(shí)間:2011-08-05

中心議題:

  • 小功率反激電源EMI抑制方法

解決方案:

  • 優(yōu)化輸入與輸出濾波網(wǎng)絡(luò)設(shè)計(jì)
  • 優(yōu)化地線設(shè)計(jì)
  • 盡量縮小高頻環(huán)路面積
  • 屏蔽和磁珠的應(yīng)用


小功率反激電源作為市場上最為成熟的電源之一,在電力電子行業(yè)占據(jù)相當(dāng)大的比重。目前介紹開關(guān)電源電磁兼容的文章很多,不過考慮到市場化,小功率反激電源只用一級EMI濾波,無散熱片,還有很重要的一點(diǎn),要考慮可生產(chǎn)性。這與單純的電磁兼容研究有很大區(qū)別,本文將從工程和生產(chǎn)的角度出發(fā)來闡述小功率反激電源EMI抑制方法。

1 抑制措施

電磁干擾(Electro Magnetic Interference),有傳導(dǎo)干擾和輻射干擾兩種。傳導(dǎo)干擾是指通過導(dǎo)電介質(zhì)把一個(gè)電網(wǎng)絡(luò)上的信號耦合到另一個(gè)電網(wǎng)絡(luò)。輻射干擾是指干擾源通過空間把其信號耦合到另一個(gè)電網(wǎng)絡(luò)。差模干擾和共模干擾是主要的傳導(dǎo)干擾形態(tài),而功率變換器的傳導(dǎo)干擾以共模干擾為主。差模噪聲主要由大的di/dt與雜散電容引起;共模噪聲則主要由較高的dv/dt與雜散電感相互作用而產(chǎn)生的高頻振蕩引起。

形成電磁干擾的條件有三:A:向外發(fā)送電磁干擾的源—噪聲源 B:傳遞電磁干擾的途徑—噪聲耦合和輻射 C:承受電磁干擾(對噪聲敏感)的客體—受擾設(shè)備

1.1 EMI濾波器的選擇選用

圖1是開關(guān)電源常用的一級EMI 濾波器的電路。圖中的L1為共模扼流圈,Cx、CY1、CY2為安規(guī)電容,對于小型開關(guān)電源來講,由于體積的限制,很多時(shí)候會(huì)將CY1、CY2會(huì)省略掉的,甚至連L1也會(huì)省去。圖中 共模扼流圈L1的兩個(gè)線圈匝數(shù)相等,方向相同,這兩個(gè)電感對于差模電流和主電流所產(chǎn)生的磁通是方向相反、互相抵消的,因而不起作用;而對于共模干擾信號,兩線圈產(chǎn)生的磁通方向相同,有相互加強(qiáng)的作用,每一線圈電感值為單獨(dú)存在時(shí)的兩倍,從而得到一個(gè)高阻抗,起到良好的抑制作用。共模電感兩邊感量不相等形成的差模電感L2一起與Cx電容組成一個(gè)低通濾波器,用來抑制電源線上存在的差模干擾信號。CY1與CY2的存在是給共模噪聲提供旁路,同時(shí)與共模電感一起,組成LC低通濾波器。共模噪聲的衰減在低頻時(shí)主要由電感起作用,而在高頻時(shí)大部分由電容CY1及CY2起作用。同時(shí),在安裝與布線時(shí)應(yīng)當(dāng)注意:濾波器應(yīng)盡量靠近設(shè)備入口處安裝, 并且濾波器的輸入和輸出線必須分開,防止輸入端與輸出端線路相互耦合,降低濾波特性。濾波器中電容器導(dǎo)線應(yīng)盡量短,以防止感抗與容抗在某頻率上形成諧振。


圖1 一級EMI 濾波器電路。

濾波器的抑制作用是用插入損耗來度量的。插入損耗A用分貝(dB)表示,分貝值愈大, 說明抑制噪聲干擾的能力愈強(qiáng),如式(1)所示:

工程設(shè)計(jì)時(shí)通過測量計(jì)算出需要設(shè)定的插入損耗值,得出轉(zhuǎn)折頻率點(diǎn),然后根據(jù)轉(zhuǎn)折頻率設(shè)計(jì)電感電容參數(shù),如式(2):

    (2)

不過注意,不是所有的濾波器都能使電磁干擾減小,有的還會(huì)更嚴(yán)重。因?yàn)闉V波器會(huì)產(chǎn)生諧振,從而產(chǎn)生插入增益。插入增益不僅不會(huì)使干擾減小,而且還使干擾增強(qiáng)。這通常發(fā)生在濾波器的源阻抗和負(fù)載阻抗相差很大時(shí),插入增益的頻率在濾波器的截止頻率附近。解決插入增益的方法:一個(gè)是將諧振頻率移動(dòng)到?jīng)]有干擾的頻率上,另一個(gè)使增加濾波器的電阻性損耗(降低Q值)。比如在差模電感上并聯(lián)電阻,或在差模電容上串聯(lián)電阻。
[page]
1.2 輸入與輸出濾波網(wǎng)絡(luò)設(shè)計(jì)的優(yōu)化
輸入與輸出濾波網(wǎng)絡(luò)主要實(shí)現(xiàn)兩個(gè)功能,第一是能量存儲(chǔ)與轉(zhuǎn)換,第二是減小高頻諧波與共模干擾。 實(shí)際電路等效為電容、等效電感、等效電阻的串聯(lián)。在高頻情況下,大電容的等效寄生參數(shù)起主要作用,無法給高頻傳導(dǎo)噪聲提供有效衰減。這時(shí)候可以選擇 型濾波,將一個(gè)大電容和一個(gè)小電容并聯(lián)起來使用,大電容抑制低頻干擾、小電容抑制高頻干擾。不過,將大容量電容和小容量電容并聯(lián)起來的方法,會(huì)在某個(gè)頻率上出現(xiàn)旁路效果很差的現(xiàn)象。這是因?yàn)樵诖箅娙莸闹C振頻率和小電容的諧振頻率之間,大電容呈現(xiàn)電感特性(阻抗隨頻率升高增加),小電容呈現(xiàn)電容特性,實(shí)際是一個(gè)LC并聯(lián)網(wǎng)絡(luò),這個(gè)LC并聯(lián)網(wǎng)絡(luò)在會(huì)在某個(gè)頻率上發(fā)生并聯(lián)諧振,導(dǎo)致其阻抗最大,這時(shí)電容并聯(lián)網(wǎng)絡(luò)實(shí)際已經(jīng)失去旁路作用。如果剛好在這個(gè)頻率上有較強(qiáng)的干擾,就會(huì)出現(xiàn)干擾問題。

1.3 緩沖電路的應(yīng)用
開關(guān)電源的干擾按噪聲源種類分為尖峰干擾和諧波干擾兩種。輸入電流中的高次諧波在電路中采用共模扼流圈來抑制,而對于尖峰干擾,除了在源頭上減小漏感,選擇快恢復(fù)二極管來減小尖峰外,最常見的就是開關(guān)管加RCD箝位電路與輸出二極管加RC吸收電路。RCD箝位電路用于抑止由于變壓器初級漏感在開關(guān)管關(guān)斷過程中產(chǎn)生的電壓尖峰。RC吸收電路用于抑制二極管關(guān)斷時(shí)變壓器次級漏感與二極管反向恢復(fù)引起的電壓尖峰。不過這些緩沖電路是通過消耗功率來達(dá)到抑制目的,因此需要根據(jù)實(shí)際需求選擇使用。

1.4 盡量縮小高頻環(huán)路面積
一般小功率反激電源有四部分需要注意環(huán)路面積:
A:初級開關(guān)環(huán)路(MOS管,變壓器,輸入電容)
B:次級開關(guān)環(huán)路(變壓器,輸出二極管,輸出電容)
C:RCD環(huán)路(R,C,D,MOS管,變壓器)
D:輔助電源環(huán)路(變壓器,二極管,電容)

因?yàn)椴钅k娏髁鬟^導(dǎo)線環(huán)路時(shí),將引起差模輻射如式(3)表示:

同時(shí),由于接地電路中存在電壓降,某些部位具有高電位的共模電壓,當(dāng)外接電纜與這些部位連接時(shí),就會(huì)在共模電壓激勵(lì)下產(chǎn)生共模電流,從而產(chǎn)生共模輻射干擾如式(4)表示:

所以,在高頻環(huán)路上,在滿足可靠性的情況下,高頻電流回路越小越好,以減小引起差模輻射的環(huán)路面積。并且環(huán)路的導(dǎo)線應(yīng)當(dāng)盡量地短,以減小引起共模輻射的環(huán)路導(dǎo)線長度。

1.5 優(yōu)化地線設(shè)計(jì)
由于地線存在阻抗,地線電流流過地線時(shí),就會(huì)在地線上產(chǎn)生電壓。細(xì)而長的導(dǎo)線呈現(xiàn)高電感,如式(5),其阻抗隨頻率的增加而增加:

在設(shè)計(jì)小功率電源電路時(shí),往往運(yùn)用單點(diǎn)接地與浮地,將地線作為所有電路的公共地線,因此地線上的電流成份很多,電壓也很雜亂,這時(shí)候就需要注意相對減小高頻回路地線的長度,以減小共模噪聲。

1.6 屏蔽的應(yīng)用
在小功率反激電源中,變壓器是一個(gè)很大的噪聲源。它作為噪聲產(chǎn)生源:
A:功率變壓器原次邊存在的漏感,漏電感將產(chǎn)生電磁輻射干擾。
B:功率變壓器線圈繞組流過高頻脈沖電流,在周圍形成高頻電磁場,產(chǎn)生輻射干擾。
C:變壓器漏感的存在使得在開關(guān)管開關(guān)瞬間,形成電壓尖峰,產(chǎn)生電磁干擾。

作為傳播途徑:隔離變壓器初次級之間存在寄生電容,高頻干擾信號通過寄生電容耦合到次邊。 對于變壓器的漏感,可以通過三明治繞法等改變工藝結(jié)構(gòu)改善,也可以通過改變變壓器性能設(shè)計(jì)來減小,對于變壓器繞組的分布電容可以通過改進(jìn)繞制工藝和結(jié)構(gòu)、增加繞組之間的絕緣、采用屏蔽等方法來減小繞組間的分布電容。從工程角度來說,特別是對于某些已經(jīng)面世而為了提高市場競爭力選擇提高EMI要求作為突破口的產(chǎn)品來說,改變變壓器性能設(shè)計(jì)肯定影響重大,而改變工藝結(jié)構(gòu)也影響到生產(chǎn)甚至性能。屏蔽是生產(chǎn)延續(xù)性最好與總體影響性最小的一種方法。

屏蔽對于干擾的抑制作用用屏蔽效能來衡量,屏蔽效能A主要由吸收損耗與反射損耗來表示,總損耗越大,屏蔽體對電磁干擾的抑制能力越強(qiáng),如式(6)表示。

[page]
從吸收損耗的公式可以得出以下結(jié)論:
屏蔽材料越厚,吸收損耗越大;屏蔽材料的磁導(dǎo)率越高,吸收損耗越大;屏蔽材料的電導(dǎo)率越高,吸收損耗越大;被屏蔽電磁波的頻率越高,吸收損耗越大。

干擾源為電場輻射源時(shí)反射損耗,如式(7):(近場波,高阻抗場)

干擾源為磁場輻射源時(shí)反射損耗,如式(8):(近場波,低阻抗場)

干擾源為電場源或者磁場源時(shí)反射損耗,如式(9):(遠(yuǎn)場波)

從反射損耗的公式可以得出以下結(jié)論:
屏蔽材料的磁導(dǎo)率越低,吸收損耗越大;屏蔽材料的電導(dǎo)率越高,吸收損耗越大。

從以上我們可以得出結(jié)論:
A:低頻:吸收損耗很小,屏蔽效能主要決于反射損耗。而反射損耗與電磁波的性質(zhì)關(guān)系很大,電場波的屏蔽效能遠(yuǎn)高于磁場波。
B:高頻:隨著頻率升高,電場波的反射損耗降低,磁場波的反射損耗增加,吸收損耗增加,當(dāng)頻率高到一定程度時(shí),屏蔽效能主要由吸收損耗決定。
C:距離的影響:距離電場源越近,則反射損耗越大。對于磁場源,則正好相反。要獲得盡量高的屏蔽效能,屏蔽體應(yīng)盡量靠近電場輻射源,盡量遠(yuǎn)離磁場輻射源。

1.7 磁珠的應(yīng)用
磁珠由鐵氧體組成,它把交流信號轉(zhuǎn)化為熱能,當(dāng)導(dǎo)線中流過電流時(shí),它對低頻電流幾乎沒有什么阻抗,但對高頻電流會(huì)有較大的衰減作用。磁珠抑制能力與它的長度成比例。不過磁珠的運(yùn)用會(huì)提高產(chǎn)品溫升,同時(shí)降低產(chǎn)品的可生產(chǎn)性,對于高功率密度的小功率電源來說,盡量避免使用。

1.8 減緩驅(qū)動(dòng)
增大MOS管驅(qū)動(dòng)電阻,使得MOS管的開通時(shí)間與關(guān)斷時(shí)間增加,使dv/dt值變小。不過這種方式會(huì)增加開關(guān)管的開關(guān)損耗,只有在沒有其他有效解決辦法時(shí)推薦使用。比如MORNSUN公司的LH15XX某型號,在確定不能更改變壓器結(jié)構(gòu)與PCB布局情況下,只有增大驅(qū)動(dòng)電阻,犧牲少許的效率來換取輻射干擾達(dá)到EN55022 CLASS B指標(biāo)。

2 案例


圖2

圖2是采用無錫硅動(dòng)力(Si-power)SP56XX系列芯片(含抖頻,降頻和跳頻技術(shù))做的小功率模塊電源產(chǎn)品(37*23*15mm),功率為5W,開關(guān)頻率65KHz,通過精心的設(shè)計(jì),在沒有圖1中輸入EMI濾波電路和無Y電容的情況下,使產(chǎn)品的傳導(dǎo)和輻射指標(biāo)分別滿足class A級和B級的要求,并能滿足最新的能源之星V的標(biāo)準(zhǔn),圖3、圖4是該產(chǎn)品的EMI測試圖(產(chǎn)品通過了UL/CE認(rèn)證)。由于電路簡單,元件少,該系列電源在批量生產(chǎn)時(shí)不良率僅為50PPM。

  
圖3 傳導(dǎo)干擾                                                             圖4 輻射干擾

3 結(jié)論

高功率密度是電源發(fā)展的一個(gè)方向,小功率反激電源也一樣。不過由于小功率電源要求體積小,成本低,它的EMI設(shè)計(jì)受到體積、熱設(shè)計(jì)和易生產(chǎn)性等方面的影響,可以發(fā)揮的空間已經(jīng)很小。需要設(shè)計(jì)人員從開始階段就要注意PCB布局,注重電源的結(jié)構(gòu)設(shè)計(jì)與輸入輸出濾波網(wǎng)絡(luò)設(shè)計(jì),優(yōu)化變壓器設(shè)計(jì),設(shè)計(jì)中期通過更改輸入EMI濾波器參數(shù)進(jìn)行現(xiàn)場調(diào)試,調(diào)試沒有效果的情況下通過增加磁珠,改變驅(qū)動(dòng)等犧牲其他性能的方式達(dá)到傳導(dǎo)和輻射指標(biāo)。

要采購變壓器么,點(diǎn)這里了解一下價(jià)格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉