FPGA和CPLD內(nèi)部自復(fù)位電路設(shè)計方案
發(fā)布時間:2016-07-12 責(zé)任編輯:susan
【導(dǎo)讀】復(fù)位信號是時序電路設(shè)計的基本信號,本文描述了復(fù)位的定義,分類及不同復(fù)位設(shè)計的影響,并討論了針對FPGA和CPLD的內(nèi)部自復(fù)位方案。
1、定義
復(fù)位信號是一個脈沖信號,它會使設(shè)計的電路進入設(shè)定的初始化狀態(tài),一般它作用于寄存器,使寄存器初始化為設(shè)定值;其脈沖有效時間長度必須大于信號到達(dá)寄存器的最大時延,這樣才有可能保證復(fù)位的可靠性。
下面將討論FPGA/CPLD的復(fù)位電路設(shè)計。
2、分類及不同復(fù)位設(shè)計的影響
根據(jù)電路設(shè)計,復(fù)位可分為異步復(fù)位和同步復(fù)位。
對于異步復(fù)位,電路對復(fù)位信號是電平敏感的,如果復(fù)位信號受到干擾,如出現(xiàn)短暫的脈沖跳變,電路就會部分或全部被恢復(fù)為初始狀態(tài),這是我們不愿看到的。因此,異步復(fù)位信號是一個關(guān)鍵信號,在電路設(shè)計時,如PCB Layout需要對其優(yōu)先考慮和作特別保護,避免信號線出現(xiàn)的干擾產(chǎn)生非期望的復(fù)位。
對于同步復(fù)位,電路在時鐘信號下對復(fù)位信號進行采樣,復(fù)位信號只在時鐘的跳變沿(邊沿)有效;如果復(fù)位信號受到干擾,只要該干擾脈沖不出現(xiàn)在時鐘的跳變沿,或者脈沖能量不足以使時鐘采樣到有效的信號,電路就不會被異常復(fù)位,這樣可有效降低信號線上出現(xiàn)毛刺等干擾信號所產(chǎn)生誤復(fù)位操作的概率,提高了電路的抗干擾能力。
在FPGA/CPLD設(shè)計中,如果復(fù)位信號是通過組合邏輯產(chǎn)生的,我們在仿真的時候經(jīng)??梢钥吹?,由于組合邏輯的競爭冒險產(chǎn)生的毛刺,會導(dǎo)致采用異步復(fù)位設(shè)計的電路被誤復(fù)位;因此在設(shè)計當(dāng)中要對異步復(fù)位信號進行同步化處理,避免誤操作產(chǎn)生。
具體的做法是:設(shè)計一個專門的復(fù)位模塊,它對復(fù)位信號(記為R)進行同步化處理,產(chǎn)生新的復(fù)位信號(記為RS),這個RS信號可作為其他模塊的復(fù)位輸入信號;而其他模塊的電路可全部采用異步復(fù)位的設(shè)計方式;這樣的設(shè)計對復(fù)位信號進行統(tǒng)一處理,可根據(jù)需要調(diào)整,相對靈活,需要注意的是,要盡量降低時鐘邊沿與復(fù)位信號R失效時刻的亞穩(wěn)態(tài)出現(xiàn)概率。
在實際的FPGA/CPLD應(yīng)用當(dāng)中,會出現(xiàn)沒有外部復(fù)位信號的情景,而FPGA/CPLD的時序設(shè)計又需要一個復(fù)位信號來使內(nèi)部的寄存器初始化為設(shè)定的狀態(tài),這時候就需要通過內(nèi)部邏輯產(chǎn)生一個內(nèi)部復(fù)位信號。
3、FPGA內(nèi)部自復(fù)位方法
內(nèi)部自復(fù)位信號是器件上電后僅產(chǎn)生一次的信號,之后一直保持無效至器件掉電。這種一次性信號,產(chǎn)生它的數(shù)字電路自身需要一個初始的確定狀態(tài),并且需要上電后就處于該種狀態(tài);對于FPGA來說,其內(nèi)部寄存器在上電后的狀態(tài)是不確定的,即無法預(yù)期的,因此利用寄存器的狀態(tài)來產(chǎn)生復(fù)位信號,不是那么可靠;但我們可以考慮FPGA的其他資源,一般FPGA內(nèi)部都有RAM資源,這些RAM都可以被配置數(shù)據(jù)初始化的,也就是說當(dāng)FPGA上電配置完成后,被初始化的RAM的數(shù)據(jù)內(nèi)容是確定的。利用這個特點,我們就可以設(shè)計可靠的內(nèi)部自復(fù)位信號。
下面給出實現(xiàn)方法:
1)配置一個數(shù)據(jù)長度為1位,地址長度為n位,且全部初始化為1的單口RAM;
2)設(shè)計一個針對該單口RAM的讀寫模塊,其內(nèi)部維護一個n位讀指針rp和一個n位寫指針wp,rp在每個時鐘節(jié)拍將其值賦給wp后并加1,保證rp領(lǐng)先于wp,將單口RAM的輸出數(shù)據(jù)作為復(fù)位信號,另外RAM的輸入數(shù)據(jù)固定為0;這樣RAM數(shù)據(jù)被先讀出,然后被置為0,因此上電配置完成后經(jīng)過2n個時鐘節(jié)拍,RAM的數(shù)據(jù)從全1變成全0,從而實現(xiàn)一次性脈沖信號的產(chǎn)生。另外,通過控制地址長度n或時鐘頻率,就可得到所需的脈沖寬度。
4、CPLD內(nèi)部自復(fù)位方法
CPLD其內(nèi)部沒有RAM,這樣就不能依靠RAM的初始化數(shù)據(jù)來產(chǎn)生可靠的復(fù)位;從原理上說,器件上電后,其寄存器的狀態(tài)是不確定的,因此我們是沒法得到一個確定的初始狀態(tài)去產(chǎn)生一個可靠的內(nèi)部復(fù)位信號,不過我們還是可以產(chǎn)生一個有一定失敗概率但概率可控的復(fù)位信號,其基本原理是:設(shè)計一個n位的狀態(tài)機,見下圖,其中一種狀態(tài)表示復(fù)位結(jié)束(記為LOOP),只要進入該狀態(tài)就會一直保持在LOOP狀態(tài)上,至于其他狀態(tài)都會跳入復(fù)位狀態(tài)(記為RESET),RESET狀態(tài)是暫態(tài),一個時鐘周期就離開進入LOOP狀態(tài);由于狀態(tài)LOOP出現(xiàn)的概率僅為:1/2n,我們控制n的長度,就可以將復(fù)位失敗概率控制在設(shè)定的要求內(nèi)。
Figure 1 內(nèi)部復(fù)位狀態(tài)圖
在實際的應(yīng)用中,我們發(fā)現(xiàn)某些CPLD產(chǎn)品有一個特性,見下圖:
Figure 2 摘自某產(chǎn)品的《handbook.pdf》
從上圖可知,該CPLD在完成內(nèi)部配置后,其內(nèi)部所有寄存器都處于清零狀態(tài),因此可以說寄存器在上電后是有一個確定的初始狀態(tài),但這個特性應(yīng)該是對通過修改具有固定內(nèi)連電路的邏輯功能來編程的CPLD所特有的,對通過改變內(nèi)部連線的布線來編程的FPGA來說,并未查到它具有這種特性,因此我們可以采取更簡單的方法來產(chǎn)生內(nèi)部自復(fù)位信號:維護一個n位計數(shù)器,它隨時鐘節(jié)拍一直遞增直至某個設(shè)定的最大值M,之后就停止計數(shù),這樣M之前的狀態(tài)就可實現(xiàn)為一個一次性的脈沖信號。
另外,該產(chǎn)品用戶如果希望配置完成后CPLD內(nèi)部各個寄存器的狀態(tài)處于可控或者特定的狀態(tài)(尤其當(dāng)其值不一定是清零的狀態(tài)),那么用戶可以使用器件提供的專用管腳DEV_CLRn來達(dá)到所期望的效果。
5、結(jié)語
復(fù)位信號是時序電路設(shè)計的基本信號,雖然只是一個脈沖信號,但要使設(shè)計的電路可靠地工作,復(fù)位信號也是一個需認(rèn)真對待的因素。
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗科技驅(qū)動的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲能解決方案
- 功率器件熱設(shè)計基礎(chǔ)(六)——瞬態(tài)熱測量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進入量產(chǎn)
- 中微半導(dǎo)推出高性價比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級分流器以及匹配的評估板
- 功率器件熱設(shè)計基礎(chǔ)(八)——利用瞬態(tài)熱阻計算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索