從形成與解讀,一文為您剖析醫(yī)療圖像處理
發(fā)布時(shí)間:2020-03-11 來源:ADI 責(zé)任編輯:wenwei
【導(dǎo)讀】上個(gè)世紀(jì)在醫(yī)療成像領(lǐng)域?qū)崿F(xiàn)的技術(shù)進(jìn)步為非侵入診斷創(chuàng)造了前所未有的機(jī)會(huì),并確立醫(yī)療成像作為醫(yī)療健康系統(tǒng)的組成部分。代表這些進(jìn)步的主要?jiǎng)?chuàng)新領(lǐng)域之一是醫(yī)療圖像處理的跨學(xué)科領(lǐng)域。
這一快速發(fā)展的領(lǐng)域涉及從原始數(shù)據(jù)采集到數(shù)字圖像傳輸?shù)膹V泛流程,而這些流程是現(xiàn)代醫(yī)療成像系統(tǒng)中完整數(shù)據(jù)流的基礎(chǔ)。如今,這些系統(tǒng)在空間和強(qiáng)度維度方面提供越來越高的分辨率,以及更快的采集時(shí)間,從而產(chǎn)生大量優(yōu)質(zhì)的原始圖像數(shù)據(jù),必須正確處理和解讀這些數(shù)據(jù)才能獲得準(zhǔn)確的診斷結(jié)果。
本文重點(diǎn)介紹醫(yī)療圖像處理的關(guān)鍵領(lǐng)域,考慮特定成像模式的環(huán)境,并討論該領(lǐng)域的主要挑戰(zhàn)和趨勢。
醫(yī)療圖像處理的核心領(lǐng)域
有許多概念和方法用于構(gòu)建醫(yī)療圖像處理領(lǐng)域,這些概念和方法側(cè)重于其核心區(qū)域的不同方面,如圖1所示。這些方面形成此領(lǐng)域的三個(gè)主要過程——圖像形成、圖像計(jì)算和圖像管理。
圖1. 醫(yī)療圖像處理中主題類型的結(jié)構(gòu)分類。
圖像形成過程由數(shù)據(jù)采集和圖像重構(gòu)步驟組成,用于解答數(shù)學(xué)反演問題。圖像計(jì)算的目的是提高重構(gòu)圖像的可解讀性并從中提取與臨床相關(guān)的信息。最后,圖像管理處理所獲取圖像和派生信息的壓縮、存檔、檢索和傳輸。
圖像形成
數(shù)據(jù)采集
圖像形成的第一個(gè)必須步驟是采集原始成像數(shù)據(jù)。該數(shù)據(jù)包含有關(guān)描述身體各內(nèi)部器官的捕獲物理量的原始信息。這些信息成為所有后續(xù)圖像處理步驟的主要主題。
不同類型的成像模式可以利用不同的物理原理,由此涉及不同物理量的探測。例如,在數(shù)字射線照相 (DR) 或計(jì)算機(jī)斷層掃描 (CT) 中,它是入射光子的能量;在正電子發(fā)射斷層掃描 (PET) 中,它是光子能量及其探測時(shí)間;在磁共振成像 (MRI) 中,它是由激發(fā)原子發(fā)射的射頻信號(hào)的參數(shù);而在超聲波中,它是回聲參數(shù)。
但是,無論是哪種類型的成像模式,數(shù)據(jù)采集過程都可以細(xì)分為物理量的探測,還包括將物理量轉(zhuǎn)換為電信號(hào)、對采集的信號(hào)進(jìn)行預(yù)調(diào)理,以及物理量的數(shù)字化。表示所有這些步驟均適用于大多數(shù)醫(yī)療成像模式的一個(gè)通用框圖如圖2所示。
圖2. 數(shù)據(jù)采集過程的通用框圖。
圖像重構(gòu)
圖像重構(gòu)是利用獲取的原始數(shù)據(jù)形成圖像的數(shù)學(xué)過程。對于多維成像,該過程還包括以不同角度或不同時(shí)間步驟捕獲的多個(gè)數(shù)據(jù)集的組合。這部分醫(yī)療圖像處理解決的是反演問題,這是該領(lǐng)域的基本主題。用于解決這類問題的算法主要有兩種——分析和迭代。
分析法的典型示例包括廣泛用于斷層掃描的濾波反投影 (FBP);在MRI中尤為重要的傅里葉變換 (FT);以及延時(shí)疊加 (DAS) 波束成型,這是超聲檢查中一種不可或缺的技術(shù)。這些算法在所需的處理能力和計(jì)算時(shí)間方面精巧而高效。
然而,它們基于理想化模型,因此有一些明顯的局限性,包括它們無法處理諸如測量噪聲的統(tǒng)計(jì)特性和成像系統(tǒng)物理等復(fù)雜因素。
迭代算法則克服了這些局限性,極大地提高了對噪聲的不敏感性以及利用不完全原始數(shù)據(jù)重構(gòu)最優(yōu)圖像的能力。迭代法通常使用系統(tǒng)和統(tǒng)計(jì)噪聲模型,基于初始目標(biāo)模型利用假設(shè)系數(shù)計(jì)算投影。計(jì)算出的投影與原始數(shù)據(jù)之間的差異定義用于更新對象模型的新系數(shù)。使用多個(gè)迭代步驟重復(fù)此過程,直到將映射估計(jì)值和真值的代價(jià)函數(shù)最小化,從而將重構(gòu)過程融入最終圖像。
迭代法有很多種,包括最大似然期望最大化(MLEM)、最大后驗(yàn)(MAP)、代數(shù)重建(ARC)技術(shù)以及許多其他目前廣泛應(yīng)用于醫(yī)療成像模式的方法。
圖像計(jì)算
圖像計(jì)算涉及對重建成像數(shù)據(jù)運(yùn)算的計(jì)算和數(shù)學(xué)方法,用于提取臨床相關(guān)信息。這些方法用于成像結(jié)果的增強(qiáng)、分析和可視化。
增強(qiáng)
圖像增強(qiáng)優(yōu)化圖像的變換表示,以提高所包含信息的可解讀性。其方法可細(xì)分為空間域和頻域技術(shù)。
空間域技術(shù)直接作用于圖像像素,對于對比度優(yōu)化特別有用。這些技術(shù)通常依賴于對數(shù)、直方圖和冪律變換。頻域方法采用頻率變換,最適合于通過應(yīng)用不同類型的濾波器對圖像進(jìn)行平滑和銳化。
利用所有這些技術(shù)可以減少噪聲和不均勻性,優(yōu)化對比度,增強(qiáng)邊緣,消除偽像,以及改善對后續(xù)圖像分析及其精確解讀至關(guān)重要的其他相關(guān)特性。
分析
圖像分析是圖像計(jì)算中的核心過程,它使用的各種方法可分為三大類:圖像分割、圖像配準(zhǔn)和圖像量化。
圖像分割過程將圖像分割為不同解剖結(jié)構(gòu)的有意義輪廓。圖像配準(zhǔn)可確保多個(gè)圖像正確對齊,這對于分析時(shí)間變化或組合使用不同模式獲取的圖像特別重要。量化的過程決定了所識(shí)別結(jié)構(gòu)的性質(zhì),如體積、直徑、成分和其他相關(guān)的解剖或生理信息。所有這些過程都直接影響到成像數(shù)據(jù)的檢查質(zhì)量和醫(yī)學(xué)結(jié)果的準(zhǔn)確性。
可視化
可視化過程將圖像數(shù)據(jù)呈現(xiàn)為在定義的維度上以特定形式直觀地表示解剖和生理成像信息。通過與數(shù)據(jù)直接交互,可以在成像分析的初始階段和中間階段進(jìn)行可視化(例如,協(xié)助分割和配準(zhǔn)過程),并在最后階段顯示優(yōu)化的結(jié)果。
圖像管理
醫(yī)療圖像處理的最后一部分涉及對所獲取信息的管理,包括用于圖像數(shù)據(jù)存儲(chǔ)、檢索和傳輸?shù)母鞣N技術(shù)。制定了若干標(biāo)準(zhǔn)和技術(shù),用于處理圖像管理的各個(gè)方面。例如,醫(yī)療成像技術(shù)圖像存檔與傳輸系統(tǒng) (PACS) 提供對來自多種模式的圖像的經(jīng)濟(jì)存儲(chǔ)和訪問,而醫(yī)學(xué)數(shù)字成像和通信(DICOM)標(biāo)準(zhǔn)用于存儲(chǔ)和傳輸醫(yī)療圖像。圖像壓縮和流傳輸?shù)奶厥饧夹g(shù)高效地實(shí)現(xiàn)了這些任務(wù)。
挑戰(zhàn)和趨勢
醫(yī)療成像是一個(gè)相對保守的領(lǐng)域,從研究過渡到臨床應(yīng)用通??赡苄枰嗄甑臅r(shí)間。然而,它的性質(zhì)復(fù)雜,在其構(gòu)成科學(xué)學(xué)科的各個(gè)方面都面臨著多方面的挑戰(zhàn),這穩(wěn)步推動(dòng)了新方法的不斷發(fā)展。這些發(fā)展代表了在當(dāng)今醫(yī)療圖像處理核心領(lǐng)域可以確定的主要趨勢。
圖像采集領(lǐng)域受益于為提高原始數(shù)據(jù)質(zhì)量和豐富其信息內(nèi)容而開發(fā)的創(chuàng)新硬件技術(shù)。集成的前端解決方案可實(shí)現(xiàn)更快的掃描時(shí)間、更精細(xì)的分辨率和先進(jìn)的架構(gòu),如超聲波/乳房X線照相術(shù)、CT/PET或PET/MRI組合系統(tǒng)。
快速高效的迭代算法取代了分析法,越來越多地用于圖像重構(gòu)。它們能顯著改善PET的圖像質(zhì)量,減少 CT 中的 X 射線劑量,并在MRI中進(jìn)行壓縮檢測。數(shù)據(jù)驅(qū)動(dòng)的信號(hào)模型正在取代人工定義的模型,基于有限或噪聲數(shù)據(jù)為反演問題提供更好的解決方案。代表圖像重構(gòu)趨勢和挑戰(zhàn)的主要研究領(lǐng)域包括系統(tǒng)物理建模和信號(hào)模型的開發(fā)、優(yōu)化算法以及圖像質(zhì)量評估方法。
隨著成像硬件捕獲越來越多的數(shù)據(jù),算法變得越來越復(fù)雜,人們迫切需要更高效的計(jì)算技術(shù)。這個(gè)巨大的挑戰(zhàn)可通過更強(qiáng)大的圖形處理器和多處理技術(shù)解決,為從研究過渡到應(yīng)用提供全新的機(jī)會(huì)。
與圖像計(jì)算和圖像管理這一轉(zhuǎn)變相關(guān)的主要趨勢和挑戰(zhàn)涵蓋許多主題,其中一些主題如圖3所示。
圖3. 當(dāng)今醫(yī)療圖像計(jì)算中的主要趨勢主題示例。
與所有這些主題相關(guān)的新技術(shù)不斷發(fā)展,縮小了研究與臨床應(yīng)用之間的差距,促進(jìn)了醫(yī)療圖像處理領(lǐng)域與醫(yī)師工作流程的整合,確保實(shí)現(xiàn)更準(zhǔn)確、更可靠的成像結(jié)果。
ADI提供多種解決方案,用以滿足對數(shù)據(jù)采集電子設(shè)計(jì)提出的最苛刻的醫(yī)療成像要求,包括動(dòng)態(tài)范圍、分辨率、準(zhǔn)確性、線性度和噪聲。下面是為確保原始成像數(shù)據(jù)最高初始質(zhì)量而開發(fā)的此類解決方案的幾個(gè)例子。
專為DR應(yīng)用設(shè)計(jì)了帶256通道的高度集成的模擬前端ADAS1256 。具有出色線性度的多通道數(shù)據(jù)采集系統(tǒng)ADAS1135 和 ADAS1134 可最大限度地提高CT應(yīng)用的圖像質(zhì)量。多通道ADC AD9228, AD9637, AD9219, 以及 AD9212 經(jīng)過優(yōu)化后具有出色的動(dòng)態(tài)性能和低功耗,可滿足PET要求。流水線ADC AD9656 為MRI提供出色的動(dòng)態(tài) 性能和低功耗特性。集成式接收器前端 AD9671 專為要求小尺寸 封裝的低成本、低功耗的醫(yī)療超聲應(yīng)用而設(shè)計(jì)。
ADAS1256產(chǎn)品詳情
● 256通道電荷至數(shù)字轉(zhuǎn)換器
● 16位分辨率、無失碼
● 同步采樣
● 用戶可調(diào)滿量程范圍,最高32pC
● 最低22 µs線路時(shí)間
● 超低噪聲:560 e−(范圍:2pC)
● INL ±2.5lsb或57.5ppm,包括ADC
● 極低功耗
● 多功能功耗模式:從每通道1mW至每通道3mW
● 多種休眠和電源模式,低至每通道0.005mW
● 可測量通過電子或空穴收集的電荷
結(jié)論
醫(yī)療圖像處理是一個(gè)非常復(fù)雜的跨學(xué)科領(lǐng)域,涵蓋從數(shù)學(xué)、計(jì)算機(jī)科學(xué)到物理學(xué)和醫(yī)學(xué)的眾多科學(xué)學(xué)科。本文試圖提出一個(gè)簡化但結(jié)構(gòu)良好的核心領(lǐng)域框架,此框架代表該領(lǐng)域及其主要主題、趨勢和挑戰(zhàn)。其中,數(shù)據(jù)采集過程是第一個(gè)也是最重要的領(lǐng)域之一,它定義醫(yī)療圖像處理框架所有后續(xù)階段中使用的原始數(shù)據(jù)的初始質(zhì)量水平。
推薦閱讀:
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗(yàn)科技驅(qū)動(dòng)的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲(chǔ)能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級分流器以及匹配的評估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
生產(chǎn)測試
聲表諧振器
聲傳感器
濕度傳感器
石英機(jī)械表
石英石危害
時(shí)間繼電器
時(shí)鐘IC
世強(qiáng)電訊
示波器
視頻IC
視頻監(jiān)控
收發(fā)器
手機(jī)開發(fā)
受話器
數(shù)字家庭
數(shù)字家庭
數(shù)字鎖相環(huán)
雙向可控硅
水泥電阻
絲印設(shè)備
伺服電機(jī)
速度傳感器
鎖相環(huán)
胎壓監(jiān)測
太陽能
太陽能電池
泰科源
鉭電容
碳膜電位器