導(dǎo)言:同步板載降壓轉(zhuǎn)換器的開關(guān)頻率是方便控制 EMI 和阻止多余拍頻的必需操作。但是,同步板上的每個降壓轉(zhuǎn)換器會產(chǎn)生不良后果。這會在輸入電容器上施加相當(dāng)大的壓力。在本文中,我們將探討如何利用可編程電源和相移減少輸入電容器上的壓力,同時保留同步的益處。
探討解決方案之前,讓我們先詳細地分析問題。系統(tǒng)的輸入電源主要傳送 DC 電流時,降壓轉(zhuǎn)換器的各種輸入電容器將傳送不連續(xù)脈沖電流。此脈沖電流的設(shè)計基本上考慮每個轉(zhuǎn)換器的所需紋波和 RMS 電流。這很簡單。意外發(fā)生在板上有多個轉(zhuǎn)換器的時候。任何轉(zhuǎn)換器不會正好從設(shè)計為其輸入電容器的電容器進行反向電流。毋容置疑,大部分來自最近的低阻抗源,但實際上,開關(guān)階段也將從板上的整個電容器網(wǎng)絡(luò)吸取必需電流。
在完全同步的系統(tǒng)中,所有轉(zhuǎn)換器脈沖電流的總和將被同時獲取。 因此,將形成單個電容器獲得的 RMS 電流。這很有意義,因為 ESR 中的電容器功耗與 RMS 電流的平方成比例。 這將產(chǎn)生向所有電容器成倍施壓的意外影響,繼而降低可靠性。 此外,這還將增加傳導(dǎo)發(fā)射面的峰值。
相移是一個簡單的解決方法。此方法是延遲每個轉(zhuǎn)換器的時鐘脈沖邊緣,以便其在原始時鐘期內(nèi)的適當(dāng)時間到達。如果正確完成,這將最大程度地減少輸入電容器內(nèi)的脈沖電流重疊量。因此,每個電容器的 RMS 電流將適當(dāng)減少,且傳導(dǎo)發(fā)射面的峰值也會降低。
過去可以使用模擬電路或 FPGA 完成相移同步時鐘。 很遺憾,這會增加額外的組件、成本和開發(fā)工作。令人欣慰的是,當(dāng)今市場上有多個數(shù)字 PWM 控制器集成了同步和相移。在本文中,Exar 的 PowerXR 技術(shù)展現(xiàn)了相移的優(yōu)點,如圖 1 所示。
圖 2 展示了輸入脈沖電流的分布式獲取。在本示例中,只有一個通道在 PowerXR 評估板上運行。此通道以 11A 的負載執(zhí)行從 12V 到 1V 的轉(zhuǎn)換。波形顯示了通過電感器的電流以及所有四個輸入電容器組中的電流。此范圍捕獲顯示電源級如何在開關(guān)“打開”時間從整個電容器網(wǎng)絡(luò)集成脈沖電流以獲取電感器。藍色的通道 2 在 PowerXR 控制器的 GPIO 引腳上切換時鐘輸出。在此案例中,它用于方便觸發(fā),但是可用于進一步同步 PWM 控制器。
[page]
現(xiàn)在,我們將在一個單個降壓轉(zhuǎn)換器的輸入電容器上展示滿載電源系統(tǒng)的作用。 對于此展示,PowerXR 控制器被重新配置以通過從 12V 輸入提供以下輸出代表典型的大功率嵌入式設(shè)計:
? 通道 1 - 1.8V(3.5A 時)
? 通道 2 - 1.2V(9.4A 時)
? 通道 3 - 2.5V(4.9A 時)
? 通道 4 - 1.0V(11.4A 時)
圖 3 顯示的范圍圖片涵蓋所有四個開關(guān)階段中的電感器電流與去耦合通道 1 的輸入電容器的脈沖電流。
請?zhí)貏e注意,峰值接近 5A,通過電容器的 RMS 電流測量值為 1.26A。如果通過電容器的電流只為滿足通道 1 的需求,那么按照以下公式,它將僅達到約 1.6A 的峰值,且RMS 電流也會低很多(假定效率約為 90%)。 這顯然不是事實,值得系統(tǒng)設(shè)計人員引起注意。
圖 4 顯示了具有一個更改的相同測試情況。PowerXR控制器被指示將開關(guān)階段放到階段外互為 90 度的位置。這在電感器電流波形中最清晰地顯示。
[page]
請注意通道 1 通過輸入電容器的電流脈沖目前如何以更高的頻率發(fā)生以及如何在幅度上顯著減少。此事件積極更改的結(jié)果是,通過電容器的 RMS 電流減至 885mA。與非相移方法中的 1.26A 相比,這降低了 50% 的 ESR 功耗。
這些結(jié)果證明,相移對于單個板上的多個開關(guān)式調(diào)節(jié)器無疑是時鐘同步的有利途徑。實施此技術(shù)為電源設(shè)計人員提供了多個新選項。通過最大程度地提高每個電容器執(zhí)行的工作并最小化其承受的壓力,組件數(shù)量得以減少。得益于輸入電容器上的減少壓力,特定設(shè)計的可靠性得到提高。每個階段減少的脈沖電流幅度以及增加的有效脈沖頻率帶來了簡化的 EMI 設(shè)計。
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計
- ADI電機運動控制解決方案 驅(qū)動智能運動新時代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 一文看懂電壓轉(zhuǎn)換的級聯(lián)和混合概念
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級分流器以及匹配的評估板
- Quobly與意法半導(dǎo)體攜手, 加快量子處理器制造進程,實現(xiàn)大型量子計算解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動車
電動工具
電動汽車
電感
電工電路
電機控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險絲
電流表
電流傳感器
電流互感器
電路保護
電路圖