【導(dǎo)讀】目前,在國(guó)內(nèi)市場(chǎng)上應(yīng)用的充電電源主要有磁飽和充電機(jī)、晶閘管整流器和高頻開(kāi)關(guān)充電電源等三類,其中前二者技術(shù)成熟,推廣應(yīng)用的時(shí)間已久,使用面也很廣。但由于受控制技術(shù)和元器件特性的限制,仍存在許多不足之處。
高頻開(kāi)關(guān)技術(shù)是采用高頻功率半導(dǎo)體器件和脈寬調(diào)制(PWM)技術(shù)的新型功率變換技術(shù)。開(kāi)關(guān)電源的逆變單元工作在高頻開(kāi)關(guān)狀態(tài)。由于工作頻率高,電路中濾波電感及電容的體積可大大縮小;同時(shí),高頻變壓器取代了工頻變壓器,則變壓器的體積減小、重量降低;另外,由于開(kāi)關(guān)管高頻工作,功率損耗小,因而開(kāi)關(guān)電源效率高。開(kāi)關(guān)管一般采用PWM控制方式,穩(wěn)壓穩(wěn)流特性較佳。將高頻開(kāi)關(guān)技術(shù)應(yīng)用于充電電源,不但有利于充電電源的小型化和高效化,而且易于產(chǎn)生極性相反的高頻脈沖電流,從而實(shí)現(xiàn)蓄電池脈沖快速充電。本文運(yùn)用高頻開(kāi)關(guān)技術(shù),設(shè)計(jì)了針對(duì)變電站直流系統(tǒng)的新型高頻開(kāi)關(guān)充電電源。
高頻開(kāi)關(guān)充電電源主電路設(shè)計(jì)
高頻開(kāi)關(guān)充電電源的主電路主要由輸入整流、輸入濾波、高頻逆變、輸出整流、輸出濾波等環(huán)節(jié)構(gòu)成。按照高頻交流信號(hào)與輸出直流信號(hào)間的耦合方式不同,可將主電路中的直流變換器(DC/DC)分為隔離型和非隔離型兩大類。其中非隔離型DC/DC變換器又分為降壓式(Buck)、升壓式(Boost)、升降壓式(Buck?boost、Cuk)等幾種電路結(jié)構(gòu),隔離型DC/DC變換器又可分為單端正激式(Forward)、單端反激式(Flyback)、推挽式(Push?pull)、半橋式(HalfBridge)、全橋式(Bridge)等電路形式。
主電路選取原則
首先設(shè)定充電設(shè)備的運(yùn)行方式為設(shè)備與蓄電池組并聯(lián)連接于直流母線上,正常運(yùn)行時(shí),充電設(shè)備承擔(dān)經(jīng)常性負(fù)荷,同時(shí)向蓄電池浮充電以補(bǔ)充其自放電的損失。
根據(jù)開(kāi)關(guān)電源的結(jié)構(gòu)特征,結(jié)合蓄電池的使用性能及其充放電特性,并考慮到直流系統(tǒng)運(yùn)行電壓的要求,確立了以下高頻開(kāi)關(guān)充電電源主電路的選取原則:
1)充電電源額定輸出電壓應(yīng)為蓄電池組標(biāo)稱電壓的1.5倍以上,額定輸出電流應(yīng)大于蓄電池組的額定充放電容量,同時(shí)還要滿足直流系統(tǒng)正常運(yùn)行時(shí)控制母線和合閘母線所需功率容量;
圖1:半橋式高頻開(kāi)關(guān)充電電源主電路
圖2:高頻開(kāi)關(guān)充電電源控制系統(tǒng)框圖
2)輸出電流、電壓在一定范圍內(nèi)連續(xù)可調(diào),并具有較好的穩(wěn)流、穩(wěn)壓特性;
3)使用高頻變壓器以隔離電網(wǎng);
4)變壓器線圈和磁芯利用率高、效率高;
5)輸入、輸出電流連續(xù),以減輕輸入、輸出濾波任務(wù),縮小裝置體積和降低對(duì)電網(wǎng)的損害;
6)具有較強(qiáng)的抗不平衡能力。
主電路選型
依據(jù)上述選取原則,經(jīng)過(guò)對(duì)各類型開(kāi)關(guān)電源主電路的分析比較,作者選取由雙端半橋式DC/DC變換器構(gòu)成的功率變換電路作為高頻開(kāi)關(guān)充電電源的主電路形式,如圖1所示。
此電路中,EMI濾波器主要用于抑制交流電網(wǎng)與直流變換電路之間的高頻噪聲干擾。D1~D6構(gòu)成三相橋式不可控整流電路,將380V交流電轉(zhuǎn)換為直流電,C0作濾波用,C1、C2、S1、S2、D01、D02構(gòu)成半橋式DC/AC變換器,將直流電壓逆變?yōu)楦哳l交流方波電壓,并經(jīng)高頻變壓器T送出。D7、D8、L、C3構(gòu)成變壓器次級(jí)整流濾波環(huán)節(jié)。GB為蓄電池,S3為控制蓄電池放電的開(kāi)關(guān)管,R為放電電阻。充電電壓V0與開(kāi)關(guān)管S1、S2工作的占空比及變壓器次初級(jí)線圈匝數(shù)比成正比,即V0=•VC0(1)
式中:tON為開(kāi)關(guān)管在一周期內(nèi)的導(dǎo)通時(shí)間;
T為開(kāi)關(guān)周期。
因此,通過(guò)改變開(kāi)關(guān)管的占空比就可調(diào)節(jié)輸出電壓。
充電時(shí),S1、S2交替導(dǎo)通相等時(shí)段,以便產(chǎn)生等寬方波脈沖。放電時(shí),關(guān)斷S1、S2,觸發(fā)S3導(dǎo)通,則蓄電池可通過(guò)電阻R放電,放電時(shí)間由S3導(dǎo)通時(shí)間決定。
半橋式高頻開(kāi)關(guān)充電電源主電路的主要特點(diǎn)是:
1)輸出功率可達(dá)幾kW,可滿足蓄電池充電的要求。
2)只有兩只開(kāi)關(guān)管進(jìn)行功率變換,簡(jiǎn)化了驅(qū)動(dòng)電路設(shè)計(jì)(相對(duì)全橋式電路而言)。
3)高頻變壓器原邊繞組在方波脈沖的正負(fù)半周都工作,故繞組利用率高。
4)開(kāi)關(guān)管截止期間承受電壓低,僅為輸入直流電壓值。
5)抗不平衡能力強(qiáng)。當(dāng)開(kāi)關(guān)管特性不一致或?qū)〞r(shí)間不一致時(shí),不會(huì)引起“單向偏磁”現(xiàn)象,
這是推挽式和橋式變換器都不具備的一個(gè)突出優(yōu)點(diǎn)。
高頻開(kāi)關(guān)充電電源控制系統(tǒng)設(shè)計(jì)
直流系統(tǒng)供電及蓄電池充電對(duì)控制系統(tǒng)的要求
1)在電網(wǎng)正常運(yùn)行時(shí),高頻開(kāi)關(guān)充電電源向直流系統(tǒng)供電并給蓄電池浮充電,此時(shí)要求輸出電壓有良好的穩(wěn)壓特性。
2)當(dāng)蓄電池容量欠虧時(shí),需進(jìn)行補(bǔ)充充電,為提高充電速度,需采取恒流充電方式,此時(shí)則要求電源有良好的穩(wěn)流特性。
3)能在一定范圍內(nèi)實(shí)現(xiàn)對(duì)電流、電壓的連續(xù)調(diào)節(jié)。
4)各種充電方式能自動(dòng)轉(zhuǎn)換。
5)蓄電池充滿時(shí)能自動(dòng)停充。
6)能對(duì)電流、電壓、溫度等各種參數(shù)進(jìn)行檢測(cè)以及作出判斷,并采取相應(yīng)保護(hù)措施。
7)具有四遙功能,即要求在遠(yuǎn)方設(shè)定參考值、測(cè)量充電電流和充電電壓,并且對(duì)系統(tǒng)運(yùn)行方式進(jìn)行遠(yuǎn)方控制,還能實(shí)現(xiàn)對(duì)工作狀態(tài)和故障信號(hào)等的遠(yuǎn)方采集。
控制系統(tǒng)組成
如圖2所示,高頻開(kāi)關(guān)充電電源的控制系統(tǒng)主要由取樣電路、信號(hào)變換電路、檢測(cè)保護(hù)電路、PWM信號(hào)生成電路和驅(qū)動(dòng)電路等組成。取樣電路從主電路的輸出采集電流、電壓等信號(hào),采樣信號(hào)與給定值進(jìn)行比較后得到的差值信號(hào)經(jīng)過(guò)誤差放大器進(jìn)行放大,以便調(diào)整PWM信號(hào)生成電路的輸出信號(hào)脈寬。檢測(cè)保護(hù)電路通過(guò)檢測(cè)蓄電池的溫度、端電壓變化、出氣率以及輸入、輸出電路的過(guò)壓、過(guò)流等情況,使PWM生成電路改變輸出脈寬或終止脈沖輸出。驅(qū)動(dòng)電路用于對(duì)PWM信號(hào)生成電路的輸出PWM信號(hào)進(jìn)行功率放大,以滿足高頻開(kāi)關(guān)管門(mén)(柵)極驅(qū)動(dòng)要求,同時(shí)實(shí)現(xiàn)控制電路與主電路的隔離。
圖3:逆變控制信號(hào)的形成原理
逆變控制電路
逆變控制電路包括PWM脈沖形成電路及IGBT驅(qū)動(dòng)電路。為了實(shí)現(xiàn)對(duì)直流系統(tǒng)的遙信、遙測(cè)、遙控和遙調(diào),并且滿足高頻開(kāi)關(guān)充電電源高頻變換控制的要求,本方案采用INTEL公司生產(chǎn)的87C196KC型單片機(jī)作為主控芯片。87C196KC軟硬件資源豐富,內(nèi)含8路A/D轉(zhuǎn)換輸入通道和3路PWM信號(hào)輸出口,速度快、效率高、功能齊全[3]。它不僅能完全取代模擬控制器,方便地實(shí)現(xiàn)PID調(diào)節(jié),而且可以通過(guò)改變軟件實(shí)現(xiàn)諸如自適應(yīng)控制、智能控制等各種新型控制策略。此外,還可利用其通信接口與其他微機(jī)進(jìn)行通信,便于實(shí)現(xiàn)遠(yuǎn)方監(jiān)控。
采用87C196KC型單片機(jī),有兩種方法可以實(shí)現(xiàn)PWM控制信號(hào)的輸出:其一是通過(guò)PWM信號(hào)輸出口。此時(shí),信號(hào)的最高開(kāi)關(guān)頻率為31.25kHz(16M晶振),這樣開(kāi)關(guān)電源實(shí)際能達(dá)到的開(kāi)關(guān)頻率為15.625kHz。然而,高頻開(kāi)關(guān)充電電源的開(kāi)關(guān)頻率在20kHz以上,所以這種方法雖然軟件開(kāi)銷小,卻不能滿足高頻開(kāi)關(guān)電源對(duì)開(kāi)關(guān)頻率的要求。另一種方法是采用高速輸出口HSO實(shí)現(xiàn)。HSO輸出的PWM信號(hào)頻率可調(diào),但控制精度較低,而且軟件開(kāi)銷很大。由上可知,87C196KC輸出的PWM信號(hào)都不適宜直接作為高頻開(kāi)關(guān)充電電源的逆變控制信號(hào),因此,本方案采用專用的集成PWM控制器SG3525產(chǎn)生PWM脈沖。其實(shí)現(xiàn)原理如圖3所示。
在圖3中,87C196KC的PWM0口作為模擬輸出接口(D/A轉(zhuǎn)換)。經(jīng)CPU運(yùn)算后得到的占空比控制信號(hào)由PWM0口輸出,并被轉(zhuǎn)換電路變換為直流電壓信號(hào),然后再被加到集成PWM控制器(SG3525)的輸入端口上。集成控制器產(chǎn)生兩路相位相反的PWM信號(hào),信號(hào)經(jīng)驅(qū)動(dòng)電路隔離放大后便可控制高頻開(kāi)關(guān)管(IGBT)的通斷。
SG3525帶有軟啟動(dòng)電路、基準(zhǔn)電壓源、誤差放大器、PWM比較器、欠壓鎖定電路、輸出限流和關(guān)斷電路、輸出驅(qū)動(dòng)電路等,驅(qū)動(dòng)能力達(dá)到100mA。在本文的控制方案中,誤差放大器接為電壓跟隨器方式,閉環(huán)控制功能由單片機(jī)完成。
驅(qū)動(dòng)電路采用EXB841集成芯片[4]。它采用單電源工作,內(nèi)裝有高隔離電壓(2500V)的光電耦合器、過(guò)流檢測(cè)和過(guò)流保護(hù)低速切斷電路以及驅(qū)動(dòng)電路,其信號(hào)延遲最大1.5μs,適用于在40kHz以下頻段工作。其額定工作電壓為25V,光耦合器輸入電流額定值10mA,顯然,SG3525的輸出信號(hào)可與之配合。光耦合器的輸出電流為4A,輸出電壓為0~20V,完全能滿足IGBT對(duì)柵極驅(qū)動(dòng)信號(hào)的要求。
本文針對(duì)應(yīng)用于變電站直流系統(tǒng)的新型高頻開(kāi)關(guān)充電電源展開(kāi)討論,主要介紹了其主電路和逆變控制電路。研究表明,半橋式高頻開(kāi)關(guān)充電電源主電路抗不平衡能力強(qiáng)、變壓器利用率高、輸出功率較大、相應(yīng)的驅(qū)動(dòng)電路不太復(fù)雜,是高頻開(kāi)關(guān)充電電源較為理想的主電路形式。以87C196KC型單片機(jī)和SG3525型集成PWM控制器為主構(gòu)成的逆變控制電路響應(yīng)速度快、控制精度高,具有比較優(yōu)勢(shì)。由于采用87C196KC作為主控芯片,充電電源控制系統(tǒng)的各種監(jiān)控功能齊備,完全能滿足變電站綜合自動(dòng)化技術(shù)對(duì)直流系統(tǒng)性能的要求。