【導(dǎo)讀】有時候您需要正電源,但大部分可用的供電軌(或僅有的可用供電軌)提供的都是負(fù)電源。事實上,負(fù)到正電壓轉(zhuǎn)換已用于汽車電子,以及各種音頻放大器、工業(yè)和測試設(shè)備的偏置電路中。雖然在許多系統(tǒng)中是電源通過相對于地的負(fù)供電軌分配,但這些系統(tǒng)中的邏輯板、ADC、DAC、傳感器和類似器件仍然需要一個或多個正供電軌。本文介紹一種簡單高效且組件數(shù)量少的電路,用于從負(fù)供電軌生成正電壓。
電路描述和電驅(qū)動系統(tǒng)功能
圖1顯示將負(fù)電壓高效轉(zhuǎn)化為正電壓的完整解決方案。這種特定的解決方案使用升壓拓?fù)?。電?qū)動系統(tǒng)包括開關(guān)MOSFET、底部Q1、頂部Q2、電感L1和輸入/輸出濾波器。同步高效升壓控制器IC通過改變電驅(qū)動系統(tǒng)中開關(guān)MOSFET的狀態(tài)來調(diào)節(jié)輸出電壓。為了描述這種電路,將系統(tǒng)接地(SYS_GND)用作極性參考,得到一個相對于SYS_GND為負(fù)的輸入供電軌(–VIN)和一個相對于SYS_GND為正的輸出供電軌(+VOUT)。
轉(zhuǎn)換器的工作方式如下。如果晶體管Q1開啟,電流從SYS_GND流向負(fù)供電軌。晶體管Q2關(guān)閉,電感L1將電能存儲在其磁場中。在開關(guān)周期的剩余時間里,Q1關(guān)閉,Q2開啟,電流開始從SYS_GND流向+VOUT供電軌,將L1電能釋放給負(fù)載。
圖1.負(fù)正轉(zhuǎn)換器電氣原理圖,VIN為–6 V至–18 V(峰值為–24 V),6 A時VOUT為+12 V。
電驅(qū)動系統(tǒng)組件選擇的基本表達
圖2所示的開關(guān)行為拓?fù)潢P(guān)系圖描述了負(fù)正轉(zhuǎn)換器的行為。在開關(guān)周期的首個區(qū)間,在占空比定義的時長內(nèi),底部開關(guān)BSW短路,頂部開關(guān)TSW斷開。電感電壓L等于–VIN。在此區(qū)間內(nèi),電感L中的電流增加,在電感兩端生成電壓極性匹配–VIN。與此同時,輸出濾波器電容放電,為系統(tǒng)負(fù)載提供電流。
圖2.負(fù)到正轉(zhuǎn)換器拓?fù)潢P(guān)系圖。
在周期的第二個區(qū)間,兩個開關(guān)切換,BSW斷開,TSW短路。電感L的極性改變,電感開始向負(fù)載和輸出濾波電容器COUT提供(在周期的第一個區(qū)間內(nèi)儲存的)電流。在這段周期內(nèi),電感的電流相應(yīng)降低。電感的伏秒平衡定義轉(zhuǎn)換器在連續(xù)導(dǎo)通模式下的占空比D。
計算時序和組件應(yīng)力
以下是描述時序和電驅(qū)動系統(tǒng)組件應(yīng)力的公式。
占空比決定開關(guān)的開/關(guān)時間
輸入電流IOUT的平均值就是輸入電流
電感電流的峰值
開關(guān)MOSFET上的電壓應(yīng)力
通過底部MOSFET的平均電流
通過頂部MOSFET的平均電流
這些表達公式可以幫助您理解拓?fù)涞墓δ埽⒊醪竭x擇電驅(qū)動系統(tǒng)組件。關(guān)于最終選擇和詳細的設(shè)計,請使用LTspice®建模和模擬工具。1
轉(zhuǎn)換器控制描述和功能
輸出電壓檢測和控制電壓的電平轉(zhuǎn)換通過由PNP晶體管Q3和Q4形成的電流鏡管控。反饋電流IFB在此電路中為1 mA)決定反饋回路中的電阻值。
其中VC為誤差放大器的基準(zhǔn)電壓。
其中RFB(T)為輸出電壓檢測電阻。
圖1所示的反饋電路是一種低成本解決方案,但分立式晶體管的容差可能會受基極發(fā)射極電壓和溫度變化差值影響。為了提高精度,可以使用配對的晶體管。
轉(zhuǎn)換器電驅(qū)動系統(tǒng)由LTC7804升壓控制器管控。之所以選擇該芯片,是因為它支持同步整流,易于實現(xiàn),可以提供高開關(guān)頻率操作(如果需要小尺寸電感)和低靜態(tài)電流,因而具有高效率。
測試結(jié)果和拓?fù)湎拗?/div>
此解決方案經(jīng)過了仔細測試和驗證。圖3顯示在各種負(fù)載電流下都能保持高效率,達到96%。注意,隨著輸入電壓絕對值減小,輸入電流和電感電流增大。在某個點,電感電流可能會超過電感的最大電流或飽和電流。從圖4的降額曲線可以明顯看出。在–9 V到–18 V范圍內(nèi),最大負(fù)載電流為6 A,輸入電壓絕對值低于–9 V時,該值更小。圖6解決方案電路板的熱性能見圖5。
圖3.在自然對流冷卻情況下,VIN為–12 V和–18 V時的效率曲線。
圖4.輸入電壓絕對值低于–9 V時的輸出電流降額曲線。
圖5.在自然對流冷卻、沒有空氣流動的情況下,VIN為–12 V,VOUT為+12 V,電流為6 A時,轉(zhuǎn)換器的熱圖像。
圖6.轉(zhuǎn)換器照片。
結(jié)論
本文介紹一種非常高效且相對簡單的完整解決方案設(shè)計,通過使用升壓控制器可以為單極性負(fù)電源添加正電軌。文中提供了電氣原理圖,以及時序、功率轉(zhuǎn)換組件和電氣應(yīng)力方面的計算。測試數(shù)據(jù)證實該系統(tǒng)具備高效率和出色的熱性能。此外,此解決方案采用升壓拓?fù)?,因而設(shè)計人員可以選擇使用預(yù)認(rèn)證的升壓控制器,從而節(jié)省開發(fā)時間和成本。而證實升壓控制器適用于負(fù)正電壓轉(zhuǎn)換器也預(yù)示著它適合未來的升壓應(yīng)用。
推薦閱讀: