影響毫米波電路的幾個(gè)關(guān)鍵問題:設(shè)計(jì)傳輸線、選擇PCB板、性能優(yōu)化
發(fā)布時(shí)間:2020-04-08 責(zé)任編輯:lina
【導(dǎo)讀】在高頻電路設(shè)計(jì)中,可以采用多種不同的傳輸線技術(shù)來進(jìn)行信號(hào)的傳輸,如常見的同軸線、微帶線、帶狀線和波導(dǎo)等。而對(duì)于PCB平面電路,微帶線、帶狀線、共面波導(dǎo)(CPW),及介質(zhì)集成波導(dǎo)(SIW)等是常用的傳輸線技術(shù)。但由于這幾種PCB平面?zhèn)鬏斁€的結(jié)構(gòu)不同,導(dǎo)致其在信號(hào)傳輸時(shí)的場(chǎng)分布也各不相同,從而在PCB材料選擇、設(shè)計(jì)和應(yīng)用,特別是毫米波電路時(shí)表現(xiàn)出不同的電路性能。本文將以毫米波下通用的PCB平面?zhèn)鬏斁€技術(shù)展開,討論電路材料、設(shè)計(jì)等對(duì)毫米波電路性能的影響,以及如何優(yōu)化。
摘要
在高頻電路設(shè)計(jì)中,可以采用多種不同的傳輸線技術(shù)來進(jìn)行信號(hào)的傳輸,如常見的同軸線、微帶線、帶狀線和波導(dǎo)等。而對(duì)于PCB平面電路,微帶線、帶狀線、共面波導(dǎo)(CPW),及介質(zhì)集成波導(dǎo)(SIW)等是常用的傳輸線技術(shù)。但由于這幾種PCB平面?zhèn)鬏斁€的結(jié)構(gòu)不同,導(dǎo)致其在信號(hào)傳輸時(shí)的場(chǎng)分布也各不相同,從而在PCB材料選擇、設(shè)計(jì)和應(yīng)用,特別是毫米波電路時(shí)表現(xiàn)出不同的電路性能。本文將以毫米波下通用的PCB平面?zhèn)鬏斁€技術(shù)展開,討論電路材料、設(shè)計(jì)等對(duì)毫米波電路性能的影響,以及如何優(yōu)化。
一、設(shè)計(jì)傳輸線在毫米波電路中的影響
1. 引言
幾年前,毫米波電路還僅僅用于航天、衛(wèi)星通信、通信回傳等特殊專有的領(lǐng)域。然而,隨著無線通信技術(shù)的飛速發(fā)展,對(duì)更高的數(shù)據(jù)傳輸速率、更小的傳輸延遲、更寬的帶寬等需求促使毫米波頻段逐漸被用在移動(dòng)通信覆蓋例如,802.11ad WiGig,5G等領(lǐng)域;隨著主動(dòng)安全駕駛和未來無人駕駛技術(shù)的發(fā)展,汽車對(duì)測(cè)距測(cè)速的要求越來越高,毫米波也被使用在如77GHz的汽車?yán)走_(dá)領(lǐng)域。但是,對(duì)于設(shè)計(jì)工程師來說,毫米波電路的設(shè)計(jì)與低頻段射頻電路設(shè)計(jì)存在著顯著的不同。毫米波頻段下不同傳輸線技術(shù)的色散輻射或高次模、阻抗匹配、信號(hào)的饋入技術(shù)等都將直接影響電路最終的性能。
2. 常用傳輸線技術(shù)
如圖1中場(chǎng)力線分布,微帶線與GCPW的信號(hào)傳播方向上并不存在場(chǎng)分量。但由于這兩種傳輸線的電、磁場(chǎng)并不完全分分布于電介質(zhì)中,有少部分場(chǎng)力線位于空氣中;導(dǎo)致信號(hào)在電介質(zhì)中與空氣中傳輸?shù)腡EM波的相速不同,其分界面并不能完全實(shí)現(xiàn)相位匹配。因此這兩種傳輸線模式是準(zhǔn)TEM波模式。而帶狀線的場(chǎng)力線上下對(duì)稱分布于中間層介質(zhì)中,因此帶狀線的傳輸模式是TEM波模式。
圖1 微帶線,接地共面波導(dǎo)及帶狀線結(jié)構(gòu)與場(chǎng)分布
SIW (Substrate integrated waveguide) 是近年來討論較多,介于微帶與介質(zhì)填充波導(dǎo)之間的一種新型傳輸線。SIW兼顧傳統(tǒng)波導(dǎo)和微帶傳輸線的優(yōu)點(diǎn),可實(shí)現(xiàn)高性能微波/毫米波的平面電路。其結(jié)構(gòu)如圖2所示,SIW由上下兩層金屬、左右兩排金屬通孔、以及中間填充的介質(zhì)構(gòu)成。其將傳統(tǒng)波導(dǎo)結(jié)構(gòu)集成在介質(zhì)基片中,實(shí)際上是一種介質(zhì)填充的波導(dǎo)結(jié)構(gòu)。SIW 中的電磁波被限制在上下金屬層和兩排金屬孔之間的區(qū)域傳播。由于電流的分布情況,在SIW中只能傳播TEn0波而不能傳播TM 或TEmn(n≠0)波,與矩形波導(dǎo)相似,SIW 傳輸?shù)闹髂J荰E10模。
圖2 SIW的結(jié)構(gòu)與場(chǎng)分布
幾種PCB平面?zhèn)鬏斁€技術(shù)有各自的優(yōu)點(diǎn)和缺點(diǎn)。例如SIW傳輸線,它具有如可應(yīng)用于超高頻段、輻射低、損耗低等優(yōu)點(diǎn),但由于其設(shè)計(jì)難度大、加工困難、不易與其他元件集成等缺點(diǎn),使其相對(duì)于其他幾種傳輸線來說并不被廣泛應(yīng)用。
3. 輻射損耗
對(duì)于PCB傳輸線電路,插入損耗主要包括介質(zhì)損耗、導(dǎo)體損耗、輻射損耗和泄露損耗幾個(gè)部分,是各種損耗成分的總和。泄漏損耗通常是由于信號(hào)與地之間形成了泄漏電流而導(dǎo)致的能量的損失。由于高頻PCB材料具有較大的體電阻,泄露損耗很小,一般可以忽略。電路的導(dǎo)體損耗是傳輸線上信號(hào)路徑的能量損失,是由導(dǎo)體自身的阻抗引起。介質(zhì)損耗則是由構(gòu)成電路的電路材料的耗散因子所決定,選擇相對(duì)較小的損耗因子材料有利于電路總的插入損耗的減小。
對(duì)于中低頻段電路,電路的插入損耗主要由導(dǎo)體損耗和介質(zhì)損耗有決定。而隨著電路所應(yīng)用的頻率的不斷升高,信號(hào)波長(zhǎng)變短,特別是在毫米波頻段,傳輸線的非閉合結(jié)構(gòu),以及傳輸線的橫截面積與線寬等保持不變而使電路的輻射損耗就變得不可忽略。微帶傳輸線盡管相對(duì)于上述其他三種在毫米波頻段更容易產(chǎn)生輻射損耗和雜散模,但由于微帶線具有的加工容易、設(shè)計(jì)簡(jiǎn)單、物理尺寸小、易于集成等諸多優(yōu)點(diǎn)使得其仍然用于毫米波電路。那么在毫米波頻段使用微帶線時(shí)需要如何進(jìn)行優(yōu)化設(shè)計(jì)呢?
圖3 同種材料不同厚度下微帶線的損耗
電路材料厚度的降低對(duì)輻射損耗的減小,也可以看作是減小了電路中寄生雜散模式的產(chǎn)生。電路中所傳輸?shù)男盘?hào)往往包含多個(gè)頻率分量。由微波電路理論知道,當(dāng)電路的厚度或?qū)挾却笥趥鬏斝盘?hào)的1/8波長(zhǎng)時(shí),電路將產(chǎn)生雜散模。如圖4所示,當(dāng)使用的電路材料較厚,設(shè)計(jì)同一阻抗如50Ω線路也會(huì)較寬,如果這一厚度或?qū)挾扰c所傳輸信號(hào)中的波長(zhǎng)相比擬時(shí),電路的性能就將被惡化。以16.6mil RO4350BTM材料設(shè)計(jì)的50Ω微帶線為例,此時(shí)微帶線的寬度是36mil。這一寬度對(duì)應(yīng)的1/4波長(zhǎng)的頻率是46.5GHz,而對(duì)應(yīng)的1/8波長(zhǎng)的頻率是23.8GHz。因此這一電路在高頻段如46.5GHz時(shí)性能較差,而在小于23.8GHz時(shí)的波動(dòng)較小、性能較好。
圖4 電路的波長(zhǎng)與雜散模
4. 信號(hào)饋入的優(yōu)化
毫米波頻段傳輸線的良好線路設(shè)計(jì)和選材可使電路的性能得到優(yōu)化,但要實(shí)現(xiàn)更好的性能,傳輸線的信號(hào)饋入設(shè)計(jì)也是非常重要的一個(gè)方面。信號(hào)饋入設(shè)計(jì)屬于電路匹配設(shè)計(jì)的范疇,良好的饋入設(shè)計(jì)可使信號(hào)能量無損耗和無反射的流入電路中,進(jìn)一步提升的電路性能。
4.1 微帶線的信號(hào)饋入
微帶線和GCPW的信號(hào)導(dǎo)體均在電路表層,它們的信號(hào)饋入示意圖如圖5所示。當(dāng)連接器的中心導(dǎo)體PIN與信號(hào)導(dǎo)體完全連接時(shí),增加了信號(hào)饋入點(diǎn)出的電容性。由傳輸線理論可以知道,微帶線的特性阻抗與電路的感抗成正相關(guān),與容抗呈反相關(guān)。電路中電容性的增加會(huì)使線路的阻抗降低,而電容性的減?。姼行栽黾樱?huì)使線路的阻抗增加。當(dāng)饋入點(diǎn)處呈現(xiàn)較大的電容性時(shí),可以通過減小饋入點(diǎn)處線路面積來減小電容,使其滿足50Ω的完全匹配;同樣,當(dāng)饋入點(diǎn)處呈現(xiàn)電感時(shí),通過增大饋入點(diǎn)處的面積來增大電容。梯形線或漸變線是常用的增大或減小電容的方式,GCPW的信號(hào)饋入也可以相同方式優(yōu)化。
圖5 微帶線/GCPW信號(hào)饋入示意圖
選取了Rogers的熱固性材料為例,制作電路進(jìn)行性能對(duì)比的實(shí)驗(yàn),如圖6所示。左圖是沒有進(jìn)行優(yōu)化之前的電路,其饋入點(diǎn)處阻抗遠(yuǎn)大于50Ω,呈現(xiàn)較大的電感性而處于失配狀態(tài);此時(shí)電路的帶寬窄,回波損耗在6.8GHz處已達(dá)到-15dB;電路的插入損耗值也從6.8GHz開始出現(xiàn)較大的波動(dòng)。而右圖是采用漸變線進(jìn)行優(yōu)化后的電路,其饋入點(diǎn)處的阻抗基本與50Ω相接近。此時(shí)電路的帶寬拓展至30GHz附近,而且其插入損耗也基本保持穩(wěn)定。因此正確處理電路饋入點(diǎn)電感性或電容性的設(shè)計(jì),可以使微帶電路的性能得到了優(yōu)化。
圖6 微帶線信號(hào)饋入優(yōu)化對(duì)比
4.2 GCPW的優(yōu)化設(shè)計(jì)
GCPW的信號(hào)饋入的優(yōu)化設(shè)計(jì)與微帶線基本相同。但由于GCPW的結(jié)構(gòu)與微帶線結(jié)構(gòu)不同,GCPW兩側(cè)地平面過孔位置對(duì)其性能也存在顯著影響。選取Rogers的RO4350BTM材料設(shè)計(jì)不同GCPW傳輸線,如圖7所示。電路均采用相同的信號(hào)饋入設(shè)計(jì),不同之處在于接地過孔的位置與間隔。從實(shí)際電路的測(cè)試看到,三個(gè)不同電路饋入點(diǎn)阻抗測(cè)試基本一致,具有較好的饋入點(diǎn)設(shè)計(jì)。
圖7不同接地過孔位置的GCPW性能比較
4.3 帶狀線的信號(hào)饋入和優(yōu)化
帶狀線的信號(hào)饋入設(shè)計(jì)與微帶線和GCPW有所不同。因線路不在電路的表層,所以并不能使用表貼式而需要使用PIN針式連接器進(jìn)行連接。如圖8所示,信號(hào)的饋入需要通過PTH過孔來完成。其過孔的設(shè)計(jì)需要考慮過孔大小、孔內(nèi)銅厚、焊盤大小,孔與接地面之間的間距、以及過孔長(zhǎng)度等參數(shù)的帶來的影響。實(shí)驗(yàn)證明,增加過孔的大小、銅厚、焊盤大小以及過孔長(zhǎng)度均使過孔的電容性增加;而過孔與接地面之間間距增加將會(huì)減小過孔的電容性,增加電感性。帶狀線的信號(hào)饋入連接器通過PIN針連接過孔的內(nèi)壁,可以看著是過孔導(dǎo)體厚度增加,導(dǎo)致了過孔的電容性變大。在設(shè)計(jì)和加工中,可以通過背鉆來移除部分過孔內(nèi)部導(dǎo)體孔壁或增加接地間距的方式,達(dá)到減小電容性的目的。
圖8 帶狀線信號(hào)饋入示意圖
選取7.3mil RO4350B LoproTM材料與8mil RO4450FTM半固化片制作了50Ω帶狀線電路,并設(shè)計(jì)不同的信號(hào)饋入過孔來評(píng)估不同設(shè)計(jì)對(duì)電路性能的影響。比較兩個(gè)測(cè)試電路,它們具有相同的孔壁銅厚和孔與地接地間隔,而電路2比電路1有更大的過孔直徑和焊盤。為減小過孔的電容性,通過背鉆,移除了電路2中多余過孔長(zhǎng)度,使電路2比電路1能更好的與50Ω形成良好匹配,如圖9所示。對(duì)兩個(gè)電路進(jìn)行回波和插入損耗的測(cè)試得到,電路2就具有更寬帶的回波損耗和穩(wěn)定的插入損耗值。其中,電路1的帶寬僅有約12GHz,而電路2的帶寬能達(dá)到22GHz。按此思路,進(jìn)一步對(duì)信號(hào)饋入過孔完善,可提高電路的工作帶寬而應(yīng)用于更高頻率的毫米波電路中。
圖9 不同饋入信號(hào)過孔設(shè)計(jì)的帶狀線性能比較
5. 總結(jié)
綜上所述,為使應(yīng)用于高頻毫米波頻段的PCB平面?zhèn)鬏斁€技術(shù)達(dá)到最優(yōu)的電路性能,需要考慮PCB選材和設(shè)計(jì)等多個(gè)影響因素。在電路設(shè)計(jì)前的選材時(shí),為控制電路色散或高次模的產(chǎn)生需要考慮較薄的PCB材料;為降低介質(zhì)損耗,應(yīng)選取較低的材料介質(zhì)損耗;為降低導(dǎo)體損耗,應(yīng)使用較光滑的銅箔等材料從而得到較好的電路傳輸性能。較窄的導(dǎo)體線寬容易增大加工難度、降低一致性,而不應(yīng)選用高介電常數(shù)材料。在電路設(shè)計(jì)過程中,合理選擇不同的傳輸線技術(shù),以及良好的信號(hào)饋入設(shè)計(jì)可降低信號(hào)能量損失,減小信號(hào)反射,達(dá)到良好的饋入點(diǎn)匹配,從而進(jìn)一步提升傳輸線電路在毫米波頻段下的性能。
二、選擇PCB板在毫米波電路中的影響
毫米波雷達(dá)傳感器在眾多傳感器中具有全天候工作的獨(dú)特特點(diǎn),使其在成為汽車主動(dòng)安全系統(tǒng)(ADAS)中的關(guān)鍵核心部件。毫米波雷達(dá)傳感器的性能受多個(gè)因素的影響,而PCB電路材料就是影響傳感器電路性能的關(guān)鍵因素之一。為確保毫米波傳感器具有較高的穩(wěn)定性和性能一致性,就需要考慮PCB電路材料中的諸多關(guān)鍵參數(shù)。本文就PCB電路材料中影響汽車毫米波雷達(dá)傳感器穩(wěn)定性和一致性的多個(gè)關(guān)鍵參數(shù)進(jìn)行了討論,分析了這些參數(shù)如何影響傳感器的性能,從而更好的選擇適合于汽車毫米波雷達(dá)的電路材料。
1. ADAS系統(tǒng)中的毫米波雷達(dá)
當(dāng)前,汽車自動(dòng)駕駛已成為全球業(yè)界的一個(gè)熱門話題。各大汽車制造商及其供應(yīng)商、科技巨頭公司等紛紛注目并摩拳擦掌進(jìn)入輔助及自動(dòng)駕駛汽車市場(chǎng)。各國(guó)政府也對(duì)自動(dòng)駕駛汽車陸續(xù)出臺(tái)了相應(yīng)的法規(guī)和標(biāo)準(zhǔn),以促進(jìn)其快速健康發(fā)展。2017年7月,全新奧迪A8在巴塞羅那的首發(fā),是全球首款具備了L3級(jí)自動(dòng)駕駛功能的量產(chǎn)車型。
圖1、全球汽車出貨量的自動(dòng)化程度趨勢(shì)
在自動(dòng)駕駛汽車的不斷發(fā)展過程中,汽車的安全性是一切發(fā)展的前提,是真正實(shí)現(xiàn)汽車自動(dòng)駕駛的關(guān)鍵。各種傳感器需要協(xié)同工作來實(shí)現(xiàn)車輛對(duì)周圍環(huán)境高精度低延時(shí)的監(jiān)控,而毫米波雷達(dá)憑借其可靠的表現(xiàn)(如應(yīng)對(duì)惡劣天氣條件)使能汽車先進(jìn)駕駛輔助系統(tǒng)(ADAS)的各種功能。這些雷達(dá)傳感器幾乎是所有現(xiàn)在正在使用的汽車先進(jìn)駕駛輔助系統(tǒng)技術(shù)的基礎(chǔ)。
汽車?yán)走_(dá)傳感器主要有短距離和中遠(yuǎn)距離雷達(dá)傳感器,它們的工作頻率分別是24GHz和77GHz/79GHz。24GHz雷達(dá)傳感器的探測(cè)距離約50m左右,距離相對(duì)較短,主要用于盲點(diǎn)監(jiān)測(cè)(BSD),變道輔助(LCA)等。77GHz雷達(dá)傳感器的的探測(cè)距離更長(zhǎng),可達(dá)到160m到230m。相比于24GHz,77GHz雷達(dá)傳感器的頻率更高、波長(zhǎng)變短、系統(tǒng)帶寬更寬,從而提高了距離和速度測(cè)量的精度和準(zhǔn)確度,主要用于自動(dòng)緊急制動(dòng)(AEB)、汽車自適應(yīng)巡航控制(ACC)和前向防撞預(yù)警(FCW)等。77GHz汽車?yán)走_(dá)的應(yīng)用對(duì)應(yīng)于汽車自動(dòng)化程度的高級(jí)階段,隨著自動(dòng)駕駛汽車的發(fā)展,77GHz汽車?yán)走_(dá)傳感器的需求和應(yīng)用逐漸呈上升趨勢(shì)。
圖2、24GHz頻段與77GHz頻段汽車?yán)走_(dá)傳感器的趨勢(shì)
對(duì)于諸如工作在77GHz/79GHz頻段的毫米波汽車?yán)走_(dá)傳感器,由于其信號(hào)的波長(zhǎng)很短,其電路性能和一致性非常容易受到多方面因素的影響。如何考慮和減小這些因素帶來的影響,確保雷達(dá)傳感器的性能具有較好的一致性就變得非常重要。對(duì)雷達(dá)傳感器的PCB電路來講,就需要理解并考慮PCB電路材料的諸多參數(shù)以及PCB加工等帶來的對(duì)一致性的影響,從而更好的進(jìn)行電路材料的選擇和電路設(shè)計(jì)。
2. 電路材料的考慮
汽車?yán)走_(dá)傳感器在毫米波頻段的應(yīng)用,對(duì)于電路設(shè)計(jì)工程師來說,如何選擇正確的PCB材料是設(shè)計(jì)電路一開始就要面臨的挑戰(zhàn)。毫米波頻段下由于其波長(zhǎng)較小,電路極易容易發(fā)生色散和產(chǎn)生高次模,因此通常考慮選擇較薄的PCB電路材料;而電路材料的介電常數(shù)和損耗隨頻率的增加也變化非常明顯,因此需要選擇在高頻時(shí)具有穩(wěn)定介電常數(shù)和具有極低損耗的電路材料。而介電常數(shù)值的值的選擇不宜較大,較大的介電常數(shù)會(huì)使設(shè)計(jì)的導(dǎo)體線寬較窄,不但增加了電路的導(dǎo)體損耗,而且增加了加工難度。
圖3、普通介質(zhì)材料的Dk/Df隨頻率的變化特性
以上的幾個(gè)考慮因素僅僅是毫米波電路設(shè)計(jì)的開始,這些因素的考慮可以使電路能夠具有較好的性能特性。然而要使成多個(gè)相同的電路都具有一致的和穩(wěn)定的電路性能,還需要考慮材料的其他多個(gè)因素。
2.1 介電常數(shù)一致性
介電常數(shù)(Dk)是電路材料最重要的參數(shù)之一,也是電路設(shè)計(jì)者的一個(gè)設(shè)計(jì)出發(fā)點(diǎn)。在汽車?yán)走_(dá)的陣列天線設(shè)計(jì)中,包括不同類型傳輸線的電路結(jié)構(gòu)尺寸、不同傳輸線的相位差或時(shí)延,以及實(shí)現(xiàn)各單元天線間距控制等都是由材料的介電常數(shù)確定的。同一板內(nèi)的介電常數(shù)的變化會(huì)導(dǎo)致汽車?yán)走_(dá)特別是毫米波汽車?yán)走_(dá)的收發(fā)之間存在某一相位差,影響交通中對(duì)其他車輛或速度的檢測(cè)精度,造成對(duì)其定位產(chǎn)生偏差。同時(shí),材料不同批次的介電常數(shù)的變化更會(huì)引起不同毫米波雷達(dá)系統(tǒng)存在差異,影響系統(tǒng)的一致性。
介電常數(shù)(Dk)通??梢苑譃椴牧辖橘|(zhì)的Dk和實(shí)際電路所呈現(xiàn)的介電常數(shù)。通常我們把材料介質(zhì)的介電常數(shù)稱為過程Dk,而實(shí)際電路所呈現(xiàn)的介電常數(shù)稱之為設(shè)計(jì)Dk。選擇過程Dk容差控制較小的電路材料有利于減小系統(tǒng)性能的差異和變化。然而,對(duì)于系統(tǒng)的性能一致性,電路所呈現(xiàn)的總的介電常數(shù)(設(shè)計(jì)Dk)更應(yīng)該值得考慮。
2.2 銅箔粗糙度
眾所周知,材料所使用銅箔的表面粗糙度對(duì)會(huì)對(duì)電路的介電常數(shù)產(chǎn)生影響。由于銅箔表面粗糙度的存在,使得電磁波在電路中的傳播速度變慢,相對(duì)于非常光滑的銅箔表面,其形成了慢波效應(yīng),從而使得電路所呈現(xiàn)的介電常數(shù)增加。越粗糙的銅箔表面使電路所呈現(xiàn)出的介電常數(shù)越大,而越光滑的銅箔表面的電路介電常數(shù)越小。同時(shí),不同厚度的材料,即使選用相同銅箔,越薄的材料上銅箔表面粗糙度對(duì)電路介電常數(shù)的影響越大,而越厚的材料其影響越小。圖4就顯示了基于相同銅箔下的RO3003TM材料,不同材料厚度所呈現(xiàn)出的不同的電路介電常數(shù)(設(shè)計(jì)Dk)值。
圖4、相同銅箔材料不同厚度的電路介電常數(shù)(設(shè)計(jì)Dk)
大多數(shù)的PCB基材都會(huì)壓合幾種不同形式的銅箔,如標(biāo)準(zhǔn)電解銅(Electro Deposited copper),反轉(zhuǎn)銅(Reverse Treated copper)或壓延銅(Rolled copper)。標(biāo)準(zhǔn)ED銅是通過電解的方式,在鈦鼓上逐漸電解沉積成不同厚度的銅箔,通常與鈦鼓接觸面較為光滑,而電解液面較為粗糙。RT銅箔也屬于電解銅,只是將與鈦鼓面相接觸銅箔表面經(jīng)過處理后與基材壓合形成。壓延銅箔是通過輥軋機(jī)碾壓銅塊而得,連續(xù)的輥軸碾壓可以得到厚度一致性很好且表面光滑的銅箔。
由于現(xiàn)實(shí)的銅箔生產(chǎn)工藝,銅箔的表面粗糙度值不可能固定不變的,銅箔表面形態(tài)總是以不同的高低起伏展現(xiàn),如圖5所示。因此對(duì)于任何銅箔類型,銅箔的粗糙度都存在一定的變化范圍。對(duì)于射頻微波應(yīng)用,Rq或者RMS(均方根)值通常被認(rèn)為較合理的銅箔粗糙度表征方式。羅杰斯公司的RO3003TM材料是被廣泛應(yīng)用于77GHz汽車毫米波雷達(dá)的電路材料,對(duì)于RO3003TM材料的ED銅箔,其典型的銅箔表面粗糙度的RMS值是 2.0um,銅箔粗糙度變化的典型值約為0.25um。越光滑的銅箔其粗糙度變化的值也就越小。
圖5、銅箔表面形態(tài)圖及不同銅箔粗糙度容差
實(shí)際應(yīng)用中電路所呈現(xiàn)出的Dk值(設(shè)計(jì)Dk)不僅需要考慮材料過程Dk的變化,同時(shí)需要考慮銅箔粗糙度變化帶來的影響。而常常被大多數(shù)工程師所忽略的電路加工過程也會(huì)造成設(shè)計(jì)Dk的變化。通常,設(shè)計(jì)工程師為了更為準(zhǔn)確的設(shè)計(jì)電路而想知道設(shè)計(jì)Dk值的變化大小,最好的方法就是選取多個(gè)不同批次材料,制作并測(cè)試多個(gè)相同電路來評(píng)估其變化。為了更好的說明這種變化情況,仍然選取了5mil RO3003TM材料,其時(shí)間跨度達(dá)4年的多個(gè)批次制作成50Ω微帶線測(cè)試電路的設(shè)計(jì)Dk。從圖6可以看到,使用銅箔粗糙度RMS值為2.0um的ED銅箔的5mil RO3003TM材料,其在77GHz時(shí)電路的設(shè)計(jì)Dk的典型值是3.16,變化約0.126;而使用光滑的壓延銅的5mil RO3003TM材料在77GHz是電路的設(shè)計(jì)Dk典型值是3.055,變化約0.096。這也進(jìn)一步證實(shí)了,材料過程Dk的容差越小,所使用銅箔的表面越光滑,其最后成品電路的設(shè)計(jì)Dk值變化越小,電路性能一致性也越好。
圖6、厚度5mil RO3003TM材料不同銅箔下電路Dk值的變化
2.3 介電常數(shù)隨溫度變化(TCDk)
電路材料的介電常數(shù)會(huì)隨溫度變化而發(fā)生變化,這種隨溫度變化的參數(shù)有助于工程師了解電路材料可能會(huì)發(fā)生的性能上的改變。通常把材料介電常數(shù)隨溫度的變化定義為TCDk,其變化越小表示材料(在溫度上)性能越穩(wěn)定。理想電路材料的TCDk值,即使溫度發(fā)生變化也會(huì)保持固定的Dk值,其TCDk的值為0ppm/℃。然而,在現(xiàn)實(shí)世界中,Dk值是會(huì)隨著電路材料溫度的變化而變化的。只有TCDk值非常低的電路材料才能被認(rèn)為是具有隨溫度穩(wěn)定Dk的材料,通常TCDk的絕對(duì)值要小于50ppm/℃。當(dāng)某一應(yīng)用要求電路需要經(jīng)受較大的工作溫度范圍,并且需要始終保持穩(wěn)定的性能時(shí)---如汽車?yán)走_(dá)傳感器的應(yīng)用,它就需要始終保持精確的測(cè)量精度,且可能工作于不同的工作溫度下---材料的TCDk參數(shù)就是需要考慮的關(guān)鍵參數(shù)之一。
同一樹脂體系的兩種材料并不會(huì)具有相同的TCDk特性,例如,雖然PTFE是性能優(yōu)異、低損耗的高頻電路材料,但是基于PTFE的不同電路材料,它的TCDk特性可能就會(huì)有很大差異。一些基于PTFE的電路材料的Dk隨溫度的變化很大,TCDk值達(dá)200ppm/℃甚至更高。同時(shí),一些基于PTFE的線路板材料可以提供接近理想狀態(tài)的TCDk特性。圖7比較了不同種類的電路材料的TCDk曲線,明顯看到環(huán)氧樹脂體系材料具有非常差的TCDk性能;而某些基于特殊陶瓷填充的PTFE材料,就具有較好的TCDk性能。77GHz汽車毫米波雷達(dá)廣泛使用的RO3003TM材料的TCDk值是-3ppm/℃。
圖7、不同種類材料的TCDk曲線
通過設(shè)計(jì)一組實(shí)驗(yàn),比較了高TCDk材料與RO3003TM材料的不同TCDk值帶來的影響。測(cè)試基于設(shè)計(jì)的長(zhǎng)度不同的50Ω微帶線電路來觀察設(shè)計(jì)Dk和相位在不同溫度下的變化情況。測(cè)試結(jié)果如圖8所示,RO3003TM材料由于其具有非常小的TCDk值,在77GHz時(shí)其Dk和電路的相位角幾乎沒有任何變化。而高TCDk材料在77GHz時(shí)的Dk變化達(dá)0.031,相位變化達(dá)到17度。當(dāng)使用高TCDk材料的毫米波汽車?yán)走_(dá)傳感器應(yīng)用在不同的溫度環(huán)境時(shí),如此高的Dk和相位變化就會(huì)嚴(yán)重影響系統(tǒng)的一致性。
圖8、實(shí)際電路中RO3003TM材料與高TCDk材料的性能比較
2.4 材料的吸濕性
汽車?yán)走_(dá)傳感器相對(duì)于其他類型傳感器的優(yōu)勢(shì)在于可以全天候工作在各種惡劣天氣條件下。因此環(huán)境的變化不僅僅是溫度的變化,還可能工作在不同的濕度環(huán)境中。設(shè)計(jì)工程師在選擇電路材料時(shí)常常忽略了材料的吸濕性,而事實(shí)上材料的吸濕性對(duì)于電路的性能和系統(tǒng)的一致性也是至關(guān)重要的。材料較低的吸濕性可以減小電路中介電常數(shù)及損耗的變化,從而使電路保持幾乎相同的電路性能,確保雷達(dá)傳感器的定位不會(huì)出現(xiàn)偏差。
羅杰斯的RO3003TM材料能廣泛應(yīng)用于77GHz汽車毫米波雷達(dá)中,低的吸濕性也是其中的一個(gè)重要原因。這里同樣以5mil RO3003TM材料為例來比較材料吸濕性對(duì)于電路設(shè)計(jì)Dk和損耗的影響。在基于IPC-TM-650 2.6.2.1國(guó)際標(biāo)準(zhǔn)測(cè)得的RO3003TM材料的吸濕率僅為0.04%,而所比較的另外一種材料的吸濕率是0.3%。通過長(zhǎng)度不同的50Ω微帶線的方式測(cè)試電路的介電常數(shù)Dk和損耗,可以看到RO3003TM材料在70GHz頻率下時(shí)的Dk和損耗分別僅變化0.005和0.13dB/inch;而具有0.3%高吸濕率的材料的電路Dk和損耗變化達(dá)到0.04和0.81dB/inch。如此高的Dk和損耗的變化自然會(huì)引起雷達(dá)傳感器性能的不一致性,在實(shí)際應(yīng)用中造成偏差。
圖9、實(shí)際50Ω微帶電路中RO3003TM材料與高吸水率材料的性能比較
2.5 玻璃布纖維效應(yīng)
在電路材料中通常會(huì)添加玻璃布來增加材料的結(jié)構(gòu)強(qiáng)度,這樣有助于提高材料的機(jī)械穩(wěn)定性。但是電路材料中的玻璃布會(huì)影響該材料的介電常數(shù)(Dk)隨著位置的變化。這種Dk的變化是由玻璃布特有的物理交織結(jié)構(gòu)造成的,發(fā)生在非常小的區(qū)域且以周期性的方式呈現(xiàn)。也就是說,玻璃布中玻璃纖維編織形的交疊處及小的開口空隙區(qū)域的Dk值會(huì)有不同,如圖10示例。通常,玻璃布或玻璃纖維的Dk約為6,而開口空隙區(qū)域的Dk由材料樹脂體系的Dk值決定,比如3。當(dāng)存在兩束玻璃纖維相互交疊時(shí),此時(shí)的Dk值最大;而開口空隙區(qū)域沒有玻璃纖維的存在,此時(shí)的Dk最??;僅有單束玻璃纖維是Dk值居中。
圖10、玻璃布纖維相互交疊形成的不同Dk值
當(dāng)含有此類玻璃布的材料僅應(yīng)用于較低頻率時(shí),由于信號(hào)波長(zhǎng)較長(zhǎng),幾乎對(duì)電路性能不會(huì)造成影響。而當(dāng)材料應(yīng)用于高頻毫米波頻率時(shí),電路性能就會(huì)受到一定的影響。以介電常數(shù)Dk為3.0、厚度5mil的電路材料為例,當(dāng)材料應(yīng)用于77GHz毫米波電路時(shí),所設(shè)計(jì)的50歐姆微帶線的寬度是12mil。常見電路材料中大于12mil的玻璃布的交疊與空隙開口是非常常見的。在實(shí)際電路中,如圖12左所示,當(dāng)微帶線分別處于玻璃纖維束或空隙上方時(shí),由于Dk的不同此時(shí)同一設(shè)計(jì)的不同電路的阻抗就存在一定差異,從而影響電路的一致性;同樣,即使處于圖11右所示情況,Dk也存在周期的變化,導(dǎo)致同一微帶線電路的阻抗也會(huì)周期的變化,進(jìn)而影響電路的相位,影響系統(tǒng)的一致性。
圖11、線路經(jīng)過不同區(qū)域的Dk的變化
正因?yàn)椴AР紟淼倪@種高頻的玻纖效應(yīng),為了盡可能減小這種影響,在考慮應(yīng)用于如77GHz汽車毫米波雷達(dá)的材料時(shí),應(yīng)選擇不含有玻璃布的電路材料。
3. 結(jié)論
自動(dòng)駕駛汽車將成為汽車行業(yè)未來發(fā)展的重點(diǎn)和方向,而毫米波雷達(dá)傳感器的獨(dú)特優(yōu)勢(shì)使其成為自動(dòng)駕駛汽車不可缺少的部件,且有助于自動(dòng)駕駛汽車成為可能。PCB電路材料是毫米波雷達(dá)傳感器的基礎(chǔ),選擇穩(wěn)定介電常數(shù)、低損耗特性的材料是設(shè)計(jì)毫米波雷達(dá)傳感器的出發(fā)點(diǎn)。然而為了使雷達(dá)傳感器具有穩(wěn)定一致的電路性能,材料所使用銅箔類型及銅箔的表面粗糙度、介電常數(shù)隨溫度的變化、材料的吸濕性、以及材料是否含有玻璃布而帶來玻纖效應(yīng)等都需要考慮,從而確保傳感器對(duì)物體和速度的精確檢測(cè)和定位。
(來源:電子工程專輯,作者:羅杰斯公司 技術(shù)市場(chǎng)工程師 袁署光)
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)聯(lián)系小編進(jìn)行處理。
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗(yàn)科技驅(qū)動(dòng)的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲(chǔ)能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測(cè)量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級(jí)分流器以及匹配的評(píng)估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
生產(chǎn)測(cè)試
聲表諧振器
聲傳感器
濕度傳感器
石英機(jī)械表
石英石危害
時(shí)間繼電器
時(shí)鐘IC
世強(qiáng)電訊
示波器
視頻IC
視頻監(jiān)控
收發(fā)器
手機(jī)開發(fā)
受話器
數(shù)字家庭
數(shù)字家庭
數(shù)字鎖相環(huán)
雙向可控硅
水泥電阻
絲印設(shè)備
伺服電機(jī)
速度傳感器
鎖相環(huán)
胎壓監(jiān)測(cè)
太陽能
太陽能電池
泰科源
鉭電容
碳膜電位器