你的位置:首頁 > RF/微波 > 正文

如何使用寬禁帶提升能量轉(zhuǎn)換效率?

發(fā)布時間:2021-02-05 來源:Paul Lee 責(zé)任編輯:lina

【導(dǎo)讀】“節(jié)約能源”是我們都非常熟悉的口號,但全球能源需求短期內(nèi)并不會下降。工業(yè)能源協(xié)會認為,到2040年,能源需求將比2018年增加約50%。樂觀地說,只有三分之二的增長是來自可再生能源。經(jīng)過簡單的計算就可以知道,這意味著來自化石燃料的實際能量基本保持不變。
  
能量需求不斷攀升
 
“節(jié)約能源”是我們都非常熟悉的口號,但全球能源需求短期內(nèi)并不會下降。工業(yè)能源協(xié)會認為,到2040年,能源需求將比2018年增加約50%。樂觀地說,只有三分之二的增長是來自可再生能源。經(jīng)過簡單的計算就可以知道,這意味著來自化石燃料的實際能量基本保持不變。你可能會認為,未來可再生能源的增加會讓能源轉(zhuǎn)換效率變得不那么重要。比如,無論你是否攔截太陽能并將其轉(zhuǎn)化為電能,太陽能都能使環(huán)境變暖,并最終為負載提供熱量。能量損失仍然是不必要的支出,特別是在目前可再生能源成本較高的情況下。因此在可預(yù)見的未來,石油和天然氣仍會與太陽能、風(fēng)能和其他能源混合使用,從能源到負載的能量轉(zhuǎn)換效率仍然是主要問題。
 
如何使用寬禁帶提升能量轉(zhuǎn)換效率?
圖片來源: Chaliya/Shutterstock.com
能量轉(zhuǎn)換:效率問題
 
對于采用諧振轉(zhuǎn)換技術(shù)的現(xiàn)代設(shè)計,現(xiàn)在的能量轉(zhuǎn)換效率已經(jīng)很高,進一步的改善已經(jīng)深入到了基本元件特性,特別是半導(dǎo)體開關(guān)。理想情況是,在“開關(guān)模式”設(shè)計中,這些開關(guān)要么是“關(guān)”,要么是“開”,無論哪種情況,只要“開”真的是短路,就不會消耗電力。而現(xiàn)實情況是,即便幾毫歐姆的導(dǎo)通電阻也會造成顯著的損耗。當(dāng)晶體管在開/關(guān)狀態(tài)之間切換時,它會產(chǎn)生一些瞬態(tài)損耗。 瞬態(tài)損耗有可能在很短的時間內(nèi)達到千瓦級。因此,保持低損耗意味著要降低導(dǎo)通電阻,加快器件開關(guān)速度,從而使瞬態(tài)損耗持續(xù)時間更短,平均值更低。傳統(tǒng)的硅基開關(guān),如IGBT和MOSFET,正在不斷改進,但新材料如碳化硅 (SiC) 和氮化鎵 (GaN)在材質(zhì)特性上更勝一籌,現(xiàn)在有很大希望在能量轉(zhuǎn)換效率上更進一步。
 
SiC和GaN寬禁帶器件縮小了效率鴻溝
 
SiC和GaN在原子級別上就與硅 (Si) 截然不同。寬禁帶是指材料中的電子從“價帶”躍遷到“導(dǎo)帶”以實現(xiàn)電流流動所需的能量。SiC和GaN所需的能量值大約是Si的兩倍,這對用SiC和GaN材料制作的器件影響非常大。SiC和GaN的導(dǎo)通電阻更低,開關(guān)速度更快,適應(yīng)的工作溫度更高,芯片面積更小,特別是SiC,其熱導(dǎo)率遠優(yōu)于Si和GaN。這意味著它們組合使用,生成的熱量會更少,而多余的熱量會被高效散出,從而成就尺寸更小、更高效的器件。另外,還有一些連鎖反應(yīng)的好處:更高的轉(zhuǎn)換效率意味著更少的外部冷卻;更快的開關(guān)速度允許其他系統(tǒng)組件縮小尺寸,降低成本和產(chǎn)品尺寸;驅(qū)動開關(guān)所需的功率遠低于競爭對手Si器件;碳化硅和氮化鎵本身就具有抗輻射能力 (rad-hard)。這些優(yōu)點再加上其耐高溫優(yōu)勢,使其非常適合航空航天應(yīng)用。那么,有什么理由不受追捧呢?
 
寬禁帶半導(dǎo)體的應(yīng)用正在加速對的
 
設(shè)計師們喜歡SiC和GaN,不過要提醒的是:作為新技術(shù),其成本也不可避免地更高一些。這些成本現(xiàn)在已經(jīng)在逐步降低,制造商們聲稱,如果考慮到它們給整個系統(tǒng)帶來的節(jié)約,其生命周期的總體成本其實更低。另外,它們在驅(qū)動設(shè)備方面比Si更挑剔。在有些情況下,用戶要等到更多的可靠性數(shù)據(jù)后才會從更成熟的Si技術(shù)遷移過來。
 
與此同時,SiC和GaN器件制造商正在穩(wěn)步革新,寬禁帶技術(shù)被認為還有一段路要走。導(dǎo)通電阻減小,額定電壓提高,創(chuàng)新型封裝結(jié)構(gòu)被用來最大限度地發(fā)揮器件的性能,實驗室和現(xiàn)場的可靠性數(shù)據(jù)也在不斷累積。即便是敏感的柵極驅(qū)動問題也已用與Si MOSFET封裝在一起的SiC或GaN器件的共源共柵結(jié)構(gòu)解決。
 
SiC和GaN有望成為半導(dǎo)體開關(guān)的未來,其效率增益正在接近實際互連設(shè)定的理論極限。對于電源工程師來說,要等到目標(biāo)再次發(fā)生變動,才會祭出另一個寬禁帶法寶。
(來源:貿(mào)澤電子,作者:Paul Lee,Murata Power Solutions的工程主管)
 
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請電話或者郵箱聯(lián)系小編進行侵刪。
 
 
推薦閱讀:
開關(guān)IC控制器的去耦旁路設(shè)計
了解無線路由器、網(wǎng)狀網(wǎng)絡(luò)和向Wi-Fi 6的過渡
一體化封裝的高級系統(tǒng)讓射頻直接轉(zhuǎn)換成為可能
羅克韋爾自動化發(fā)布《引領(lǐng)快速消費品的智能制造未來》白皮書
實現(xiàn)電動汽車電池管理系統(tǒng)無線化的BMS方案
要采購開關(guān)么,點這里了解一下價格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉