環(huán)境光檢測優(yōu)化便攜設(shè)備顯示屏設(shè)計方案
發(fā)布時間:2016-06-20 責(zé)任編輯:wenwei
【導(dǎo)讀】在“時時連接”的今天,大多數(shù)便攜設(shè)備都將顯示屏作為一大賣點(diǎn),用戶通過顯示屏能夠訪問并觀看視頻和互聯(lián)網(wǎng)信息。出于對功耗和觀看舒適度等方面的考慮,許多設(shè)備已經(jīng)配備了環(huán)境光傳感器——目的是使設(shè)備能夠檢測周圍的環(huán)境情況。在昏暗的環(huán)境下,可調(diào)低顯示屏背光亮度,以節(jié)省電池電量;在明亮的環(huán)境下,增強(qiáng)字體和背光亮度能夠使設(shè)備顯示更清晰,改善用戶體驗(yàn)。本文討論了設(shè)計帶有環(huán)境光傳感器的產(chǎn)品時需要注意的事項。
光測量的光譜靈敏度
首先,探討一下人眼對環(huán)境光的視覺反應(yīng)。人眼對光線的感應(yīng)靈敏度通常用光譜光視效率(又稱CIE曲線)表示(圖1)。從圖中可以看出,人眼看不到光譜中的紫外線(< 400nm)和紅外線(> 700nm),此外人眼對綠光(~555nm)最敏感,對藍(lán)光和紅光較為不敏感。為此,我們對該靈敏度曲線進(jìn)行了標(biāo)準(zhǔn)化,將入射光功率密度(單位為μW/cm2)轉(zhuǎn)換為人眼的靈敏度單位(單位為lux)。波長為555nm時,1 lux相當(dāng)于大約0.15μW/cm2的光功率密度。
圖1. 適光曲線給出了人眼對不同波長光線的視覺反應(yīng)。人眼對綠光的反應(yīng)最強(qiáng),但卻看不到光譜中的紅外(> 700nm)或紫外(< 400nm)部分。
制造工藝和技術(shù)方面的挑戰(zhàn)使得低成本環(huán)境光傳感器(ALS)很難準(zhǔn)確復(fù)現(xiàn)人眼對光線的視覺反應(yīng),完全絕對地抑制紅外線和紫外線也是一大難題。由于常見光源的光譜非常寬,即使略微偏離適光曲線,再加上不能完全抑制紅外線和紫外線,就會對環(huán)境光傳感器的測量精度造成非常大的影響。
實(shí)際上,許多商用照度計均無法準(zhǔn)確匹配適光曲線。因此,大多數(shù)照度計都定義了一個f1參數(shù),該參數(shù)用于說明照度計與光學(xué)CIE曲線的匹配程度。經(jīng)驗(yàn)不足的用戶在操作商用照度計時還應(yīng)注意另外一個問題——許多照度計聲稱根據(jù)美國國家標(biāo)準(zhǔn)與技術(shù)研究院(NIST)的標(biāo)準(zhǔn)進(jìn)行了校準(zhǔn)。然而,事實(shí)上這種聲明只能說明照度計在采用白熾(A類)光源進(jìn)行測試時能夠給出正確的讀數(shù),但并不保證非白熾光源的測量精度,例如熒光燈、太陽光或LED——盡管此類光源更為常見。事實(shí)上,由于白熾光源的能效非常低,各個國家正在積極推進(jìn)在日常生活中禁止使用白熾光源。
因此,現(xiàn)今的環(huán)境光傳感器均嘗試工作在與光學(xué)CIE曲線無法完全匹配的情況,并代之以采用疊加原理來計算環(huán)境光亮度?,F(xiàn)在市場上的大多數(shù)光傳感器采用兩個或多個不同類型的光電二極管,每個光電二極管對光譜不同區(qū)域的敏感度不同。對這些光電二極管的輸出進(jìn)行算術(shù)整合,并對每個光電二極管設(shè)置一個適當(dāng)?shù)目烧{(diào)增益,傳感器即可較為準(zhǔn)確地測量常見環(huán)境光源的亮度。
例如,如果兩個不同類型的光電二極管PD1和PD2針對兩種不同的入射光源給出不同的讀數(shù),就可得到每個光電二極管的增益常數(shù),從而使傳感器能夠在兩種光源下均提供準(zhǔn)確的光強(qiáng)測量值:
光源1 = 增益1 × PD1 + 增益2 × PD2
光源2 = 增益1 × PD1 + 增益2 × PD2
光電二極管的類型越多,則可精確匹配的光源數(shù)量就越多。
日常生活中常見光源的光譜區(qū)別非常大(圖2)。以住宅和辦公室中的常見光源為例,熒光燈和白熾燈的光譜成分就截然不同——熒光燈的紅外成分極低,而白熾燈的紅外成分則高得多。因此,大多數(shù)環(huán)境光傳感器的數(shù)據(jù)資料都列出了這兩種常見光源的響應(yīng)特性(圖3)。
圖2. 以上曲線為太陽光(左上)、鹵素/白熾燈(右上)、熒光燈(左下)和白光LED (右下)的光譜比較。
圖3. 大多數(shù)環(huán)境光傳感器的數(shù)據(jù)資料都包含典型光靈敏度與照度計讀數(shù)(lux)的對應(yīng)關(guān)系。上圖所示為MAX44009環(huán)境光傳感器的響應(yīng)曲線。
光測量的動態(tài)范圍
人眼對光照條件的敏感范圍很寬。在黑暗的環(huán)境中(可能需要數(shù)分鐘的時間以適應(yīng)這種條件),人眼能夠檢測到低至10-4 lux的亮度水平。在另一個極端環(huán)境下,即使亮度高達(dá)108 lux,人眼也能感知到黑暗。
人們在日常生活中常見的典型環(huán)境亮度通常要窄得多,從夜間室外的0.1 lux到辦公室照明的300 lux,再到太陽光下的100,000 lux。大多數(shù)便攜設(shè)備只需準(zhǔn)確檢測5 lux到大約1000 lux的環(huán)境光強(qiáng)度。實(shí)際應(yīng)用中,便攜設(shè)備顯示屏的背光效果并不能夠與太陽光的強(qiáng)度完全一致,當(dāng)光強(qiáng)達(dá)到某個較低等級時,顯示屏即開始簡單地維持在最低背光亮度。
值得注意的是,人眼對亮度的感知呈對數(shù)關(guān)系(類似于人耳對聲音的靈敏度)。光強(qiáng)增加幾乎10倍,而人眼只能感知到兩倍的亮度變化??梢杂靡粋€類似的傳遞函數(shù)表示顯示屏背光亮度百分比與相對環(huán)境光強(qiáng)的對應(yīng)關(guān)系,如圖4中的線性和對數(shù)曲線所示。
圖4a. 該線性曲線給出了背光強(qiáng)度與相對光強(qiáng)的對應(yīng)關(guān)系。黑線為理想對數(shù)曲線,藍(lán)線采用折線近似法,更適于用微控制器代碼實(shí)現(xiàn)。
圖4b. 這些曲線為采用對數(shù)坐標(biāo)表示相對光強(qiáng)時的圖4a中的線性數(shù)據(jù)。黑線為理想對數(shù)曲線,藍(lán)線采用折線近似法,更適于用微控制器代碼實(shí)現(xiàn)。
由此可見,在較低等級光強(qiáng)下,需要較高的亮度測量分辨率;在較高等級的光強(qiáng)下,采用一般的分辨率就足夠了。實(shí)現(xiàn)這一機(jī)制的最簡單方法是采用具有前端可編程增益的高分辨率轉(zhuǎn)換器,從而平衡強(qiáng)光下對寬動態(tài)范圍的要求,以及亮度較低時對高靈敏度的要求。
MAX44009與其它數(shù)字光傳感器不同,它采用了片內(nèi)自動量程調(diào)節(jié)機(jī)制。這種調(diào)節(jié)方法能夠使IC自動實(shí)現(xiàn)22位動態(tài)范圍測量,無需微控制器重新配置寄存器,從而提高了編碼效率。此外,對測量結(jié)果進(jìn)行壓縮,并以12位格式表示,從而為光測量提供了一個偽對數(shù)步長。以MAX44009為例,器件采用4位指數(shù)和8位尾數(shù)表示22位動態(tài)范圍,低亮度條件下的分辨率可達(dá)0.045 lux/計數(shù),環(huán)境光亮度較高時具有更高的計數(shù)值。
黑玻璃效應(yīng)
現(xiàn)代化電子設(shè)備的外觀和質(zhì)感,也就是其工業(yè)設(shè)計,與它們所提供的特性和功能同樣重要。用戶已經(jīng)將現(xiàn)代化便攜設(shè)備視為一種“身份”的象征。例如,環(huán)境光傳感器對設(shè)備非常重要,但是現(xiàn)在將這些傳感器隱藏起來使用戶不可見已經(jīng)成為一種標(biāo)準(zhǔn)做法,從而不影響產(chǎn)品的外觀和質(zhì)感。
對于玻璃面板,通常在傳感器開口處加一層薄薄的黑色油墨(吸收幾乎所有的入射光),將其“遮蓋”起來。少量光線透過油墨,到達(dá)光傳感器,既能夠進(jìn)行環(huán)境光測量,同時又使面板保持有光滑、平整的黑色邊框(圖5)。
圖5. 典型的平板電腦設(shè)計,LCD顯示屏周圍采用黑色邊框面板。用戶看不到隱藏在其后的環(huán)境光傳感器。
不幸的是,這層黑色油墨在很大程度上影響了光傳感器的正常工作,不僅減弱了到達(dá)傳感器的光強(qiáng),而且還改變了光譜。首先,討論光衰減問題。大多數(shù)黑色油墨僅允許2%至10%的可見光穿過,5 lux的外部光源到達(dá)傳感器時僅剩0.1 lux!因此,要求光傳感器具備較高的靈敏度。其次,雖然只有2%至10%的可見光能夠穿透油墨,但幾乎全部的入射紅外輻射均能夠穿透油墨到達(dá)傳感器,從而造成了光譜的改變(圖6)。
圖6. 上圖為目前商用電子設(shè)備中黑色油墨的典型光譜特性,表示了入射光透射百分比與波長的關(guān)系。
不均勻的光譜透射特性使得目前大多數(shù)光傳感器必須重新校準(zhǔn),以便在被置于黑色油墨下方時仍能獲得準(zhǔn)確的環(huán)境光測量讀數(shù),也因此需要重新調(diào)節(jié)適用于無黑色油墨條件下精確光測量的工廠設(shè)置。正因?yàn)槿绱?,MAX44007環(huán)境光傳感器允許操作多個內(nèi)部光電二極管。這種靈活性使用戶能夠針對大多數(shù)應(yīng)用調(diào)節(jié)和重新校準(zhǔn)傳感器響應(yīng)特性。MAX44007的靈敏度為0.025 lux/LSB。
光傳感器中斷引腳的使用
大多數(shù)應(yīng)用不需要實(shí)時改變顯示屏背光強(qiáng)度,其目的是防止響應(yīng)噪聲,例如掠過的陰影。相比之下,快速響應(yīng)環(huán)境光的一致變化能夠使用戶連貫地使用設(shè)備,無需分心為了改善顯示效果而調(diào)節(jié)顯示屏亮度。此外,在固件中不斷輪詢光傳感器(以檢查環(huán)境光強(qiáng)度是否發(fā)生變化)和噪聲抑制電路對應(yīng)用軟件資源來說也是一種負(fù)擔(dān)。這會增加微控制器處理負(fù)荷,進(jìn)而延緩對用戶命令的響應(yīng)速度,并增大功耗。
因此,目前的光傳感器都配備了一個強(qiáng)大的功能——中斷引腳。傳感器持續(xù)比較環(huán)境光測量值與內(nèi)部可編程窗口門限,并在光強(qiáng)超出門限時觸發(fā)一個中斷,從而向主微控制器報告光照條件發(fā)生了實(shí)質(zhì)性變化。通常采用一個定時器,定時器超時的情況下才向主控制器報告中斷,以避免環(huán)境光信號中的噪聲和短時波動引起誤操作。
中斷引腳使傳感器的應(yīng)用變得更為智能,只有在需要操作時才向主微控制器發(fā)出請求。這樣一來,主微控制器的資源就能夠分配給其它任務(wù),或者微控制器可維持在低功耗等待狀態(tài),從而延長電池壽命。典型應(yīng)用電路(圖7)給出了中斷引腳的使用方法。需要注意的是,該引腳的開漏連接允許“線或”連接至多個器件和信號源。
圖7. 多點(diǎn)I2C總線上的環(huán)境光傳感器典型應(yīng)用電路,顯示了中斷引腳與主微控制器的連接方式。
總結(jié)
本文概述了目前便攜設(shè)備的光傳感器設(shè)計中常見的應(yīng)用注意事項。在開發(fā)早期確定方案,與IC供應(yīng)商緊密合作,可確保系統(tǒng)的靈活性和可靠性。
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗(yàn)科技驅(qū)動的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲能解決方案
- 功率器件熱設(shè)計基礎(chǔ)(六)——瞬態(tài)熱測量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級分流器以及匹配的評估板
- 功率器件熱設(shè)計基礎(chǔ)(八)——利用瞬態(tài)熱阻計算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
生產(chǎn)測試
聲表諧振器
聲傳感器
濕度傳感器
石英機(jī)械表
石英石危害
時間繼電器
時鐘IC
世強(qiáng)電訊
示波器
視頻IC
視頻監(jiān)控
收發(fā)器
手機(jī)開發(fā)
受話器
數(shù)字家庭
數(shù)字家庭
數(shù)字鎖相環(huán)
雙向可控硅
水泥電阻
絲印設(shè)備
伺服電機(jī)
速度傳感器
鎖相環(huán)
胎壓監(jiān)測
太陽能
太陽能電池
泰科源
鉭電容
碳膜電位器