高速數(shù)字系統(tǒng)的仿真設(shè)計(jì)
發(fā)布時(shí)間:2020-05-09 責(zé)任編輯:lina
【導(dǎo)讀】高速數(shù)字系統(tǒng)設(shè)計(jì)成功的關(guān)鍵在于保持信號(hào)的完整,而影響信號(hào)完整性(即信號(hào)質(zhì)量)的因素主要有傳輸線的長(zhǎng)度、電阻匹配及電磁干擾、串?dāng)_等。
高速數(shù)字系統(tǒng)設(shè)計(jì)成功的關(guān)鍵在于保持信號(hào)的完整,而影響信號(hào)完整性(即信號(hào)質(zhì)量)的因素主要有傳輸線的長(zhǎng)度、電阻匹配及電磁干擾、串?dāng)_等。
設(shè)計(jì)過(guò)程中要保持信號(hào)的完整性必須借助一些仿真工具,仿真結(jié)果對(duì) PCB 布線產(chǎn)生指導(dǎo)性意見(jiàn),布線完成后再提取網(wǎng)絡(luò),對(duì)信號(hào)進(jìn)行布線后仿真,仿真沒(méi)有問(wèn)題后才能送出加工。目前這樣的仿真工具主要有 cadence、ICX、Hyperlynx 等。Hyperlynx 是個(gè)簡(jiǎn)單好用的工具,軟件中包含兩個(gè)工具 LineSim 和 BoardSim。LineSim 用在布線設(shè)計(jì)前約束布線和各層的參數(shù)、設(shè)置時(shí)鐘的布線拓?fù)浣Y(jié)構(gòu)、選擇元器件的速率、診斷信號(hào)完整性,并盡量避免電磁輻射及串?dāng)_等問(wèn)題。BoardSim 用于布線以后快速地分析設(shè)計(jì)中的信號(hào)完整性、電磁兼容性和串?dāng)_問(wèn)題,生成串?dāng)_強(qiáng)度報(bào)告,區(qū)分并解決串?dāng)_問(wèn)題。作者使用 LineSim 工具,對(duì)信號(hào)的阻抗匹配、傳輸線的長(zhǎng)度、串?dāng)_進(jìn)行了仿真分析,并給出了指導(dǎo)性結(jié)論。
阻抗匹配
高速數(shù)字信號(hào)的阻抗匹配非常關(guān)鍵,如果匹配不好,信號(hào)會(huì)產(chǎn)生較大的上沖和下沖現(xiàn)象,如果幅度超過(guò)了數(shù)字信號(hào)的閾值,就會(huì)產(chǎn)生誤碼。阻抗匹配有串行端接和并行端接兩種,由于串行端接功耗低并且端接方便,實(shí)際工作中一般采用串行端接。以下利用 Hyperlynx 仿真工具對(duì)端接電阻的影響進(jìn)行了分析。以 74 系列建立仿真 IBIS 模型如圖 1 所示。仿真時(shí)選擇一個(gè)發(fā)送端一個(gè)接收端,傳輸線為帶狀線,設(shè)置線寬 0.2mm 和介電常數(shù)為 4.5(常用的 FR4 材料),使傳輸線的阻抗為 51.7Ω。設(shè)置信號(hào)頻率為 50MHz 的方波,串行端接電阻 Rs 分別取 0Ω、33Ω和 100Ω的情況,進(jìn)行仿真分析,仿真結(jié)果如圖 2 所示。
圖中分別標(biāo)出了匹配電阻是 0Ω、33Ω、100Ω時(shí)接收端的信號(hào)波形。從波形看出,0Ω時(shí)波形有很大的上沖和下沖現(xiàn)象,信號(hào)最差;100Ω時(shí)信號(hào)衰減較大,方波幾乎變成了正弦波;而匹配電阻是 33Ω時(shí)波形較好。理想的匹配電阻值,可以利用軟件的 terminatorWizard 工具,自動(dòng)根據(jù)器件的參數(shù)模型算出最佳匹配電阻為 33.6Ω,實(shí)際應(yīng)用中可以選用 33Ω。利用仿真和器件的 IBIS 模型,可以很精確地知道匹配電阻值的大小,從而使信號(hào)完整性具有可控性。
圖 1 74 系列仿真模型
圖 2 不同串行端接電阻的仿真結(jié)果
傳輸線長(zhǎng)度的影響
在高速數(shù)字電路的設(shè)計(jì)中,除了阻抗匹配外,部分器件對(duì)傳輸線的長(zhǎng)度有著嚴(yán)格的要求,信號(hào)頻率越高,要求傳輸線的長(zhǎng)度越短。以 X1 器件和 X2 器件為例建立仿真模型如圖 3 所示。在仿真模型中加了 33Ω的匹配電阻,選擇仿真信號(hào)頻率為 66MHz 方波,改變傳輸線長(zhǎng)度分別為 76.2mm 和 254mm 時(shí)進(jìn)行仿真。仿真結(jié)果如圖 4 所示。
圖 3 X1、X2 器件仿真模型
圖 4 不同長(zhǎng)度傳輸線仿真結(jié)果
從圖中看出,信號(hào)線加長(zhǎng)后,由于傳輸線的等效電阻、電感和電容增大,傳輸線效應(yīng)明顯加強(qiáng),波形出現(xiàn)振蕩現(xiàn)象。因此在高頻 PCB 布線時(shí)除了要接匹配電阻外,還應(yīng)盡量縮短傳輸線的長(zhǎng)度,保持信號(hào)完整性。
在實(shí)際的 PCB 布線時(shí),如果由于產(chǎn)品結(jié)構(gòu)的需要,不能縮短信號(hào)線長(zhǎng)度時(shí),應(yīng)采用差分信號(hào)傳輸。差分信號(hào)有很強(qiáng)的抗共模干擾能力,能大大延長(zhǎng)傳輸距離。差分信號(hào)有很多種,如 ECL、PECL、LVDS 等,表 1 列出 LVDS 相對(duì)于 ECL、PECL 系統(tǒng)的主要特點(diǎn)。LVDS 的恒流源模式低擺幅輸出使得 LVDS 能高速驅(qū)動(dòng),對(duì)于點(diǎn)到的連接,傳輸速率可達(dá) 800Mbps,同時(shí) LVDS 低噪聲、低功耗,連接方便,實(shí)際中使用較多。LVDS 的驅(qū)動(dòng)器由一個(gè)通常為 3.5mA 的恒流源驅(qū)動(dòng)對(duì)差分信號(hào)線組成。接收端有一個(gè)高的直流輸入阻抗,幾科全部的驅(qū)動(dòng)電流流經(jīng) 10Ω的終端電阻,在接收器輸入端產(chǎn)生約 350mV 電壓。當(dāng)驅(qū)動(dòng)狀態(tài)反轉(zhuǎn)時(shí),流經(jīng)電阻的電流方向改變,此時(shí)在接收端產(chǎn)生有效的邏輯狀態(tài)。圖 5 是利用 LVDS 芯片 DS90LV031、DS90LV032 把信號(hào)轉(zhuǎn)換成差分信號(hào),進(jìn)行長(zhǎng)距離傳輸?shù)牟ㄐ螆D。在仿真時(shí)設(shè)置仿真頻率為 66MHz 理想方波,傳輸距離為 508mm,差分對(duì)終端接 100Ω負(fù)載匹配傳輸線的差分阻抗。從仿真結(jié)果看,LVDS 接收端的波形除了有延遲外,波形保持完好。
表 1 LVDS、ECL、PECL 邏輯標(biāo)準(zhǔn)對(duì)照表
圖 5 LVDS 電路仿真結(jié)果
串?dāng)_分析
由于頻率的提高,傳輸線之間的串?dāng)_明顯增大,對(duì)信號(hào)完整性也有很大的影響,可以通過(guò)仿真來(lái)預(yù)測(cè)、模擬,并采取措施加以改善。以 CMOS 信號(hào)為例建立仿真模型,如圖 6 所示。在仿真時(shí)設(shè)置干擾信號(hào)的頻率為 66MHz 的方波,被干擾者設(shè)置為零電平輸入,通過(guò)調(diào)整兩根線的間距和兩線之間平行走線的長(zhǎng)度來(lái)觀察被干擾者接收端的波形。仿真結(jié)果如圖 7,分別為間距是 203.2mm、406。4mm 時(shí)的波形。
圖 6 串?dāng)_模型
圖 7 不同間距的串?dāng)_仿真結(jié)果
從仿真結(jié)果看出,兩線間距為 406.4mm 時(shí),串?dāng)_電平為 200mV 左右,203.2mm 時(shí)為 500mV 左右??梢?jiàn)兩線之間的間距越小串?dāng)_越大,所以在實(shí)際高速 PCB 布線時(shí)應(yīng)盡量拉大傳輸線間距或在兩線之間加地線來(lái)隔離。
結(jié)束語(yǔ)
在高速數(shù)字電路設(shè)計(jì)中,不用仿真而只憑傳統(tǒng)的設(shè)計(jì)方法或經(jīng)驗(yàn)很難預(yù)測(cè)和保證信號(hào)完整性,仿真已成為高速信號(hào)設(shè)計(jì)的必要手段,利用仿真可以預(yù)測(cè)信號(hào)的傳輸情況,從而提高系統(tǒng)的可靠性。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)聯(lián)系小編進(jìn)行處理。
特別推薦
- AMTS 2025展位預(yù)訂正式開(kāi)啟——體驗(yàn)科技驅(qū)動(dòng)的未來(lái)汽車(chē)世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽(yáng)能和儲(chǔ)能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測(cè)量
- 貿(mào)澤開(kāi)售Nordic Semiconductor nRF9151-DK開(kāi)發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車(chē)規(guī)級(jí)分流器以及匹配的評(píng)估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開(kāi)啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書(shū)下載更多>>
- 車(chē)規(guī)與基于V2X的車(chē)輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車(chē)安全隔離的新挑戰(zhàn)
- 汽車(chē)模塊拋負(fù)載的解決方案
- 車(chē)用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索
生產(chǎn)測(cè)試
聲表諧振器
聲傳感器
濕度傳感器
石英機(jī)械表
石英石危害
時(shí)間繼電器
時(shí)鐘IC
世強(qiáng)電訊
示波器
視頻IC
視頻監(jiān)控
收發(fā)器
手機(jī)開(kāi)發(fā)
受話器
數(shù)字家庭
數(shù)字家庭
數(shù)字鎖相環(huán)
雙向可控硅
水泥電阻
絲印設(shè)備
伺服電機(jī)
速度傳感器
鎖相環(huán)
胎壓監(jiān)測(cè)
太陽(yáng)能
太陽(yáng)能電池
泰科源
鉭電容
碳膜電位器