通用運(yùn)放與精密運(yùn)放應(yīng)該如何選擇?
發(fā)布時(shí)間:2021-06-08 責(zé)任編輯:lina
【導(dǎo)讀】我們常用的是通用運(yùn)算放大器如LM321用于電流檢測應(yīng)用。這是數(shù)十年來一直在使用的傳統(tǒng)運(yùn)算放大器之一。這些傳統(tǒng)運(yùn)算放大器成本低,用于無數(shù)應(yīng)用。然而,有時(shí)同樣的客戶又向我們反饋,說這些運(yùn)算放大器在其電流檢測電路中出現(xiàn)故障。當(dāng)我們查看退回的運(yùn)算放大器單元時(shí),它們按預(yù)期工作。那么問題出在哪里?
我們常用的是通用運(yùn)算放大器如LM321用于電流檢測應(yīng)用。這是數(shù)十年來一直在使用的傳統(tǒng)運(yùn)算放大器之一。這些傳統(tǒng)運(yùn)算放大器成本低,用于無數(shù)應(yīng)用。然而,有時(shí)同樣的客戶又向我們反饋,說這些運(yùn)算放大器在其電流檢測電路中出現(xiàn)故障。當(dāng)我們查看退回的運(yùn)算放大器單元時(shí),它們按預(yù)期工作。那么問題出在哪里?
因?yàn)檫\(yùn)算放大器是“通用的”并不意味著“可用于所有用途”。電流檢測應(yīng)用需要精密。電流檢測通常用于電源管理和過流保護(hù)應(yīng)用。想象一個(gè)不精確的世界。當(dāng)您的手機(jī)電量快耗盡時(shí),電量指示可能是8%。您可能設(shè)計(jì)在100A觸發(fā)的過流電路,卻發(fā)現(xiàn)保護(hù)電路在150A才啟動(dòng),所有下游器件都被損壞。這就是通用和精密的區(qū)別。
一個(gè)精密運(yùn)算放大器的關(guān)鍵是輸入失調(diào)電壓。其共模抑制比(CMRR)和電源抑制比(PSRR)也有更好的規(guī)格,但這兩個(gè)參數(shù)都可當(dāng)作隨共模電壓或電源電壓變化的輸入失調(diào)電壓。什么是輸入失調(diào)電壓?輸入失調(diào)電壓是每一個(gè)運(yùn)算放大器輸入的固有偏置,是由于制造工藝引起的輸入晶體管輕微失配。在學(xué)校時(shí),我們了解到理想的運(yùn)放具有零輸入失調(diào)電壓,但我們知道在現(xiàn)實(shí)世界不是這樣。
傳統(tǒng)通用運(yùn)算放大器如LM321有VOS =±7mV(最大值),現(xiàn)代通用運(yùn)算放大器如NCS20071有VOS =±3.5 mV(最大值)。此最大規(guī)格分布在零附近。這說明大多時(shí)候隨機(jī)選擇的器件將表現(xiàn)出近零的偏置。
您可以確信,您的原型電路與常用的LM321一起完美工作,但當(dāng)電路進(jìn)入量產(chǎn)時(shí),您可能會發(fā)現(xiàn)發(fā)生故障的比例相當(dāng)大。這是因?yàn)橹圃旃に嚠a(chǎn)生器件間變異(part-to-part variation),并且一些器件接近限值。您應(yīng)始終為電路設(shè)計(jì)最大輸入失調(diào)電壓。
我們有時(shí)看到客戶忘記檢查電路在最壞情況下的限值:輸入失調(diào)電壓限值、CMRR限值、電阻網(wǎng)絡(luò)容差、溫度效應(yīng)等。
相較LM321和NCS20071通用運(yùn)算放大器,新的NCS21911精密運(yùn)算放大器由于其斬波穩(wěn)定式結(jié)構(gòu),最大失調(diào)VOS = ±25V(微伏)。失調(diào)電壓實(shí)際上產(chǎn)生多少差異?讓我們考慮這樣一種狀況:分路壓降為固定的50mV,如圖1所示。
圖1. 對比輸入失調(diào)電壓和由此產(chǎn)生的輸出偏移誤差。
輸入失調(diào)電壓7 mV和3.5 mV的放大器具有明顯的輸出偏移誤差。
我們可更仔細(xì)看看圖2中Vos=7 mv的示例。
圖2. 低邊電流檢測和輸入失調(diào)電壓造成輸出誤差通過選擇精密運(yùn)放如NCS21911,輸入失調(diào)電壓造成的誤差在這電路示例中幾乎可忽略不計(jì)。它不僅提高了輸出精度,甚至還有一些余量來減小檢測電阻尺寸,并仍保持所需的精度。由于低失調(diào)電壓支持降低檢測電阻值,同時(shí)保持相同的精度,如圖3所示,效率得以大大提高。當(dāng)檢測電阻尺寸減小時(shí)會發(fā)生什么?檢測電阻功耗更少,這意味著可以使用更低瓦特和更低成本的電阻,而物理尺寸更較小的檢測電阻最終占用PCB的空間更少,提高了系統(tǒng)的整體能效,減少了損耗。
圖3. 對比固定精度要求下輸入失調(diào)電壓和由此產(chǎn)生的分路壓降。分路壓降越小,效率越高。
在許多應(yīng)用中,流過檢測電阻器的負(fù)載電流是可變的。有時(shí)當(dāng)客戶嘗試在0A附近進(jìn)行電流測量時(shí),他們發(fā)現(xiàn)誤差顯著增加;這是正常的,應(yīng)該是預(yù)期的。當(dāng)電流降至零時(shí),誤差百分比變?yōu)闊o窮大。這電流檢測電路用于測量電流;不是用于在沒有電流時(shí)的精確測量。
圖4顯示了精度如何隨著電流增加而提高。注意由于輸入失調(diào)電壓導(dǎo)致的誤差變化。即使當(dāng)檢測電壓降低時(shí),NCS21911的25V偏移也支持相對精確的測量。
圖4. 由于輸入失調(diào)電壓造成的誤差
似乎在效率和精密性上的小改進(jìn)可以節(jié)省物料單、印刷電路板(PCB)成本和電費(fèi)。雖然選擇較便宜的運(yùn)算放大器可能會在前期省一些錢,但考慮到最終系統(tǒng)級的節(jié)省可能是您的優(yōu)勢,通過采用價(jià)格合理的精密運(yùn)算放大器。
在許多應(yīng)用中,通用運(yùn)算放大器會正常工作。即使傳統(tǒng)的LM321也可在已設(shè)計(jì)相應(yīng)電路的電流檢測應(yīng)用中工作。記住,您應(yīng)該預(yù)期相對較高的輸出誤差。或者,檢測電阻器的尺寸應(yīng)當(dāng)較大,以獲得比輸入失調(diào)電壓足夠大的壓降。
對于低邊電流檢測,轉(zhuǎn)向精密運(yùn)放提高了精度和系統(tǒng)能效。NCS21911精密運(yùn)算放大器有一個(gè)標(biāo)準(zhǔn)輸出引腳,使其只需簡單插入就能替代通用運(yùn)算放大器如LM321和NCS20071。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請電話或者郵箱聯(lián)系小編進(jìn)行侵刪。
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗(yàn)科技驅(qū)動(dòng)的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級分流器以及匹配的評估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索