【導讀】本次設計是基于FPGA 的電機測速系統(tǒng)設計,利用的是Altera 公司開發(fā)的Quartus II 軟件作為設計平臺,可以在FPGA 開發(fā)板上實現(xiàn)測量由傳感器轉(zhuǎn)換得到的脈沖信號,并且通過計算得到電機轉(zhuǎn)速值。
現(xiàn)場可編程門陣列即FPGA,是從EPLD、PAL、GAL等這些可編程器件的基礎上進一步發(fā)展起來的。作為專業(yè)集成電路領域中的半定制電路而出現(xiàn)的FPGA,不但解決了定制電路的不足,而且克服了原有可編程器件因門電路數(shù)有限的而產(chǎn)生的缺點。FPGA 的使用十分的靈活,同一片F(xiàn)PGA 只要使用不同的程序就能夠達到不同的電路功能?,F(xiàn)在FPGA 在通信、儀器、網(wǎng)絡、數(shù)據(jù)處理、工業(yè)控制、軍事和航空航天等眾多領域有著廣泛的應用。隨著成本和功耗的進一步降低,將在更多的領域運用FPGA?;贔PGA 的電機測速系統(tǒng)設計,以Quartus II 為設計平臺,采用硬件描述語言VHDL和模塊化設計的方式,并通過數(shù)碼管驅(qū)動電路動態(tài)顯示測量的結(jié)果。本設計具有外圍電路少,集成度高,可靠性強等特點,可以用來測量電機的轉(zhuǎn)速值。
外圍電路設計
傳感器將電機轉(zhuǎn)速的模擬信號轉(zhuǎn)換成數(shù)字脈沖信號送入FPGA 模塊。同時由基準時鐘電路產(chǎn)生準確的時鐘信號和復位電路產(chǎn)生的復位信號送入FPGA 模塊。再由FPGA 模塊產(chǎn)生分頻電路、十進制計數(shù)器電路、數(shù)據(jù)處理電路和顯示譯碼電路。由分頻電路將送入的基準時鐘信號進行分頻,得到一個閘門信號,作為十進制計數(shù)器的使能信號。數(shù)據(jù)處理電路的作用是將十進制計數(shù)器得到的數(shù)據(jù)進行相應的處理后,再送入顯示譯碼電路進行轉(zhuǎn)換譯碼。電機測速系統(tǒng)的總體框圖如圖1所示。外圍電路分為:基準時基電路,復位電路,傳感器測量電路和顯示電路。
圖2 有源晶振電路圖
基準時基電路設計
基準時基電路采用50 MHz 的有源晶振,3.3 V 電源通過FB5接入有源晶振的VCC 端口,同時通過C10和C11濾去高頻干擾信號。從OUT 端口輸出50 MHz 的時鐘信號。晶振電路如圖2所示。
復位按鍵的設計
按鍵作為嵌入式智能控制系統(tǒng)中人機交互的常用接口,我們通常會通過按鍵向系統(tǒng)輸入各種信息,調(diào)整各種參數(shù)或者發(fā)出控制指令,按鍵的處理是一個很重要的功能模塊,它關系到整個系統(tǒng)的交互性能,同時也影響系統(tǒng)的穩(wěn)定性。在本次設計中,通過按鍵實現(xiàn)了FPGA模塊的手動復位。復位按鍵如圖3所示。
圖3 復位按鍵電路圖
顯示電路的設計
在本次設計中我們用到的顯示電路如圖4 所示。
由數(shù)碼管顯示電路可以知道,這是共陽極數(shù)碼管。當在位選端SE1~SE4輸入低電平時,三極管導通,從而D1~D4接入高電平。由a 到DP 端輸入數(shù)碼管顯示碼,就可以得到我們所需要的數(shù)字,由位選端讓數(shù)碼管選擇導通。
本次設計是基于FPGA 的電機測速系統(tǒng)設計,利用的是Altera 公司開發(fā)的Quartus II 軟件作為設計平臺,可以在FPGA 開發(fā)板上實現(xiàn)測量由傳感器轉(zhuǎn)換得到的脈沖信號,并且通過計算得到電機轉(zhuǎn)速值。在本次設計中,還可以進行一些擴展,可以添加報警電路,設定一個報警值,當測量的轉(zhuǎn)速值大于這個報警值時,就可以讓蜂鳴器報警或數(shù)碼管點亮。