從公式(9)可看出,相位展開可以大幅減小輸入電容需求。
POL調(diào)節(jié)器中的輸入紋波和噪聲的來(lái)源是什么?
發(fā)布時(shí)間:2016-09-14 責(zé)任編輯:wenwei
【導(dǎo)讀】POL調(diào)節(jié)器上的輸入濾波器可發(fā)揮兩項(xiàng)重要的作用,一個(gè)作用是防止開關(guān)電源產(chǎn)生的電磁干擾到達(dá)電力線和影響其它設(shè)備,第二個(gè)作用是保護(hù)轉(zhuǎn)換器及其負(fù)載以避免輸入電壓中出現(xiàn)的瞬變,從而提高系統(tǒng)可靠性。因此,輸入電容器對(duì)于調(diào)節(jié)器的正確運(yùn)作及最大限度地減少來(lái)自開關(guān)調(diào)節(jié)器的噪聲排放至關(guān)重要。
愛立信POL調(diào)節(jié)器通過使用如圖1所示的非隔離型同步降壓拓?fù)鋪?lái)實(shí)現(xiàn)。在降壓功率級(jí)的正常運(yùn)作期間,QH和QL交替開關(guān),開關(guān)次數(shù)由具有固定頻率PWM方案的控制電路來(lái)管理。由于輸出端的電感器/電容器組合作用,用于降壓功率級(jí)的輸出電流變得平滑。但是,由于在每個(gè)開關(guān)周期中功率開關(guān)QH電流從零至全負(fù)載進(jìn)行脈動(dòng),使得用于降壓功率級(jí)的輸入電流是脈動(dòng)或形成斬波。對(duì)于調(diào)節(jié)器的正確運(yùn)作及最大限度地減少來(lái)自開關(guān)調(diào)節(jié)器的噪聲排放,輸入電容器顯然是至關(guān)重要的。
圖1 降壓轉(zhuǎn)換器的簡(jiǎn)化原理圖和輸入波形
許多應(yīng)用使用了相當(dāng)傳統(tǒng)的中間總線架構(gòu)(IBA),如圖2所示。在IBA中,電路板級(jí)中間總線轉(zhuǎn)換器(IBC)為多個(gè)POL調(diào)節(jié)器饋送電力,這些調(diào)節(jié)器的位置接近負(fù)載電路,并且提供最終運(yùn)作電壓。所有這些開關(guān)轉(zhuǎn)換器在公用DC輸入總線產(chǎn)生紋波和噪聲,應(yīng)當(dāng)加以抑制。如果未有濾波,調(diào)節(jié)器的輸入紋波和噪聲可以達(dá)到足夠高的水平,干擾使用同一電源供電的其它設(shè)備。除了POL轉(zhuǎn)換器產(chǎn)生的輸入紋波和噪聲之外,IBC也具有自己的輸出電壓紋波和噪聲。
圖 2 在IBA中電路板級(jí)IBC為多個(gè)POL調(diào)節(jié)器饋送電力
因此,POL調(diào)節(jié)器上的輸入濾波器可發(fā)揮兩項(xiàng)重要的作用,一個(gè)作用是防止開關(guān)電源產(chǎn)生的電磁干擾到達(dá)電力線和影響其它設(shè)備,第二個(gè)作用是保護(hù)轉(zhuǎn)換器及其負(fù)載以避免輸入電壓中出現(xiàn)的瞬變,從而提高系統(tǒng)可靠性。
因此,POL調(diào)節(jié)器中的輸入紋波和噪聲的來(lái)源是什么?如何更好地設(shè)計(jì)輸入濾波器來(lái)緩減其發(fā)生?
穩(wěn)定性
在輸入端增添一個(gè)具有衰減特性足夠良好能夠滿足噪聲和紋波規(guī)范要求的濾波器,如果輸入濾波器僅由電容器(C)構(gòu)成,穩(wěn)定性不是問題。如果輸入濾波器還包括電感器(LC),則必需檢查穩(wěn)定性:因?yàn)檩斎霝V波器改變了調(diào)節(jié)器的動(dòng)態(tài)參數(shù)。輸出阻抗在某些頻率范圍可能變大,可能表現(xiàn)出共振,使得音頻的敏感性可能會(huì)降低。問題在于LC輸入濾波器可能影響轉(zhuǎn)換器的動(dòng)態(tài)參數(shù),通常會(huì)減低調(diào)節(jié)器的性能。
輸入濾波器設(shè)計(jì)中一個(gè)重要但常常被忽視的方面,就是要滿足Middlebrook規(guī)范。根據(jù)這項(xiàng)規(guī)范,如果輸入濾波器的輸出阻抗曲線遠(yuǎn)遠(yuǎn)低于輸入阻抗曲線,那么輸入濾波器便不會(huì)顯著改動(dòng)轉(zhuǎn)換器環(huán)路增益,如公式1所示:
換句話說,為了避免振蕩,關(guān)鍵在于確保濾波器的峰值輸出阻抗Zo,Filter保持低于其輸入阻抗 Zi,POL。如圖3所示,POL調(diào)節(jié)器經(jīng)設(shè)計(jì)為負(fù)載提供恒定電壓,(幾乎)與負(fù)載電流無(wú)關(guān)。因此,調(diào)節(jié)器在控制器帶寬范圍內(nèi)的最小輸入阻抗Zi,POL,min如公式2計(jì)算所得:
此處:Vi是輸入電壓,Vo是輸出電壓,Io是穩(wěn)態(tài)輸出負(fù)載電流,而η是調(diào)節(jié)器的效率。
圖 3 輸入濾波器的輸出阻抗和調(diào)節(jié)器的輸入阻抗示例
輸入紋波和噪聲源
對(duì)于POL調(diào)節(jié)器,輸入紋波和噪聲具有三個(gè)分量,首個(gè)出現(xiàn)在通常稱作紋波的基礎(chǔ)開關(guān)頻率上。
第二個(gè)分量是輸入總線上的AC電壓偏移,這是由于POL模塊輸出上的負(fù)載瞬態(tài)變化造成的,這通常是一種持續(xù)時(shí)間為數(shù)百微秒等級(jí)的、具有數(shù)十kHZ等效頻率的低頻現(xiàn)象。
第三個(gè)噪聲分量與發(fā)生在開關(guān)轉(zhuǎn)換期間的高頻振鈴相關(guān),POL以不連續(xù)脈沖電流的形式從輸入源中吸取功率過程中,它的開關(guān)動(dòng)作產(chǎn)生了這類噪聲。這個(gè)分量的頻率等同于POL的開關(guān)頻率,它具有數(shù)個(gè)可擴(kuò)展到MHz頻率范圍的諧波。
另一個(gè)在DC總線上的高頻噪聲源是IBC。反射的紋波和來(lái)自源轉(zhuǎn)換器的噪聲通常比POL模塊引起的紋波和噪聲小很多,這是由于典型IBC在輸出上具有LC濾波器,可以顯著減小紋波和噪聲。
因而,在輸入總線上生成的大多數(shù)紋波和噪聲的主要原因在于POL調(diào)節(jié)器,請(qǐng)留意所有愛立信POL調(diào)節(jié)器在模塊上都放置了陶瓷濾波電容器,可顯著減小紋波和噪聲。然而,通過在POL模塊的輸入總線上放置附加的電容器,可以進(jìn)一步降低這些紋波和噪聲。
基礎(chǔ)開關(guān)頻率輸入紋波
對(duì)于降壓轉(zhuǎn)換器,在開關(guān)周期的導(dǎo)通部分,將輸出電感連接至輸入,在關(guān)斷期間則斷開。對(duì)于輸入端的恒定DC電壓,在QH導(dǎo)通期間的輸入電容器電荷數(shù)必需等于QH關(guān)斷期間的電容器電荷數(shù),且兩者極性相反。圖1所示為輸入電容器波形,公式3則詳細(xì)說明降低紋波電壓幅度至可接受水平所需的陶瓷電容容量。紋波幅度隨著輸入電壓而變化,在50%占空比下為最大值。下面是公式3:
其中:Ci,min是最小所需陶瓷輸入電容;?Vi,pp 是最大允許峰-峰輸入紋波電壓;fsw是開關(guān)頻率,而D是上述定義的占空比。
輸入電壓紋波來(lái)源于等效串聯(lián)電阻ESR,可以按照如下公式4估算:
其中:?Vi,ESR是輸入電容器ESR引起的輸入電壓紋波,ESRi 是輸入電容器的ESR,?Ipp 是最大輸出電流紋波。
根據(jù)這些公式,為了降低輸入紋波,可以增加電容或減小輸入電容器的ESR。陶瓷電容器通常具有很低的ESR,并且對(duì)于輸入電壓紋波幾乎沒有影響。
輸入濾波電容器承載電流的AC組成部分,大多數(shù)紋波電流都會(huì)流經(jīng)已經(jīng)放置在模塊中的陶瓷電容器,然而,AC紋波電流的一部分也來(lái)自于輸入總線,而輸入總線大多數(shù)是由外部輸入電容器提供的。因而,注意RMS額定電流不要超出所選擇的外部電容器。
總體RMS電流ICi,RMS分布在外部和內(nèi)部輸入電容器之間,計(jì)算如下公式5:
請(qǐng)留意RMS電流可以通過愛立信電源設(shè)計(jì)人員(EPD)工具中的同步/相位展開功能來(lái)計(jì)算。
輸出瞬變帶來(lái)的低頻率噪聲
當(dāng)設(shè)計(jì)使用共享的大容量輸入電容器組,并且包括單一或多個(gè)POL模塊的系統(tǒng)時(shí),第一步是計(jì)算輸入瞬態(tài)電流的幅度,這是通過計(jì)算每個(gè)POL模塊的輸出瞬變的反射輸入瞬變電流得到的。在計(jì)算每個(gè)模塊的個(gè)別輸入瞬變之后,將它們相加以得到總體瞬變電流。在計(jì)算時(shí),必需確定所有模塊的最差情形瞬變組合,并且相應(yīng)地處理。通過以下公式6計(jì)算輸入電流瞬變幅度?Ii:
此處:?Ii是輸入瞬變電流,?Io 是輸出瞬變電流。
接下來(lái),確定在輸入電容器上的最大允許電壓偏差?Vtr。
這是步驟一計(jì)算的峰值瞬變期間的最大允許下降,下述公式7計(jì)算最小所需輸入電容Ci,tr,min。
此處:Lftotal 是串行濾波器電感加上雜散電感,如果沒有使用濾波器電感電感濾波器,便必需把雜散電感 Lsrc,計(jì)算在內(nèi)。
請(qǐng)留意這個(gè)公式是計(jì)算近似值,它生成的數(shù)值應(yīng)當(dāng)被認(rèn)為是絕對(duì)最小值。選擇電容器數(shù)值以滿足所需總體電容時(shí),應(yīng)當(dāng)考慮溫度和DC偏壓和紋波電流降額等其它因素的影響,這些因素可能會(huì)降低實(shí)際的數(shù)值。
高頻噪聲
DC-DC轉(zhuǎn)換器中的高頻輸入噪聲是在高頻振鈴過程中產(chǎn)生,或者與轉(zhuǎn)換器功率級(jí)的寄生元件有關(guān)。存儲(chǔ)在寄生元件中的能量在開關(guān)轉(zhuǎn)換期間振蕩或振鈴,這類噪聲通常為數(shù)百M(fèi)Hz。
鋁電解和鉭電容器具有高等效串聯(lián)電阻(ESR)值,因此,通常并不適合解耦POL模塊的噪聲和紋波。然而,它們能夠配合陶瓷電容器組合,用于抑制負(fù)載瞬變引起的較低頻率紋波等其它用途。 對(duì)于高頻衰減,必需選擇針對(duì)紋波電流能力并具有低ESL和低ESR的電容器。為了降低模塊輸入端的高頻電壓尖峰,在模塊的輸入端應(yīng)當(dāng)放置小封裝陶瓷電容器。
在處理高頻開關(guān)紋波和噪聲方面,布局也是很重要的。陶瓷電容器應(yīng)當(dāng)盡可能靠近POL調(diào)節(jié)器,如圖4所示,如果需要,在其后面應(yīng)接著低ESR聚合物和鋁電解電容器。
應(yīng)該通過使用較寬的跡線或形狀及并行板,最大限度地減小雜散電感。
由于RMS電流將由多個(gè)輸入電容器分享,建議挑選在開關(guān)頻率下,阻抗相比鉭電容和/或鋁電解電容器低很多的陶瓷電容器。這將確保大部分RMS紋波電流將會(huì)流經(jīng)陶瓷電容器,而不會(huì)通過具有高ESR的鉭電容器和/或鋁電解電容器。
請(qǐng)留意X5R多層陶瓷電容器(MLCC)具有高電容,但是電容會(huì)在50%以上的額定電壓下顯著減小。X7R電容器對(duì)比DC電壓和溫度的典型電容變化如圖5和圖6所示??梢钥吹?,在-55 °C至 125 °C溫度范圍,X7R電容器僅僅變化±15%。然后,必需找到在寬溫度范圍保持穩(wěn)定性的應(yīng)用。因此,由于X7R具有良好的溫度和電壓系數(shù),因而是優(yōu)選的介電材料。由于碎裂問題,應(yīng)當(dāng)避免MLCC大于1210,還必需觀察電容器制造商的焊接和處理指令。
圖 4. 顯示輸入電容器的放置的BMR 463模塊布局示例
具有超低紋波和噪聲的輸入DC總線
根據(jù)應(yīng)用,有時(shí)設(shè)計(jì)人員會(huì)選擇在分布式總線和開關(guān)調(diào)節(jié)器的輸入之間插入一個(gè)電感器,以防止噪聲耦合進(jìn)入電路板上的其它電路。在這樣的情況下,使用一個(gè)具有小電感和小電容組合的濾波器,就是最節(jié)省成本和空間的最好解耦方法,參見圖7。濾波器電路中的電感器增加了輸入總線的源電阻,選擇電感器的數(shù)值時(shí),應(yīng)當(dāng)以滿足公式1為準(zhǔn)則。
圖5. X7R電容器對(duì)比DC電壓的典型電容變化
圖6. X7R電容器對(duì)比溫度的典型電容變化
圖7.結(jié)合電感器和電容器組合的濾波器的電路圖
相位展開
當(dāng)多個(gè)POL調(diào)節(jié)器共享一個(gè)DC輸入電源時(shí),最好是調(diào)節(jié)每個(gè)器件的時(shí)鐘相位偏移,使得各器件的上升邊緣并不一致。為了實(shí)現(xiàn)相位展開,所有轉(zhuǎn)換器都必需根據(jù)相同的開關(guān)時(shí)鐘進(jìn)行同步。
在相位展開電源中,并行調(diào)節(jié)器在特定的相位角度開關(guān)。這些角度均勻地分布,因而可最大限度地消除紋波電流,針對(duì)輸入電容器RMS電流ICi,RMS的通用公式近似這樣:
在上述公式(8)中:m=floor(ND),floor函數(shù)傳回低于或等于輸入數(shù)值ND的最大整數(shù),N是有效相位的數(shù)目。
圖8. 常規(guī)化RMS輸入紋波電流對(duì)比占空比
圖8顯示在負(fù)載電流上的正?;斎爰y波電流RMS數(shù)值對(duì)比具有不同有效相位數(shù)目的占空比。
從公式7和公式8看出,輸入紋波電流的消除與相位和占空比的數(shù)目相關(guān),增加更多相位通常可實(shí)現(xiàn)更大的紋波削減。電容器ESR使得大紋波電流將會(huì)在輸入電容器中引起很高的功耗,也會(huì)縮短電容器的使用壽命。除了減小輸入RMS電流,交錯(cuò)也會(huì)減小峰-峰電流。
輸入電容器的開關(guān)電流通常是高頻噪聲的主要來(lái)源,通過降低開關(guān)電流幅度可以降低電流轉(zhuǎn)換速率,同時(shí)可為高邊MOSFET提供AC電流,從而減小噪聲。輸入紋波的頻率也高于單相運(yùn)作的頻率。較高的頻率可以減小輸入濾波器的體積和成本。
公式8定義了通過相位展開將紋波電壓幅度降低至可接受水平所需的輸入電容。
在下面公式(9)中,ΔVi,pp 是輸入電容所貢獻(xiàn)的可接受輸入電壓紋波,這是濾除大部分脈沖電流的輸入電容。
從公式(9)可看出,相位展開可以大幅減小輸入電容需求。
根據(jù)下面公式(10)可以估算出輸入電容器件ESRi 的 ESR所引起的輸入電壓紋波。
文章來(lái)源于電子技術(shù)設(shè)計(jì)。
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計(jì)
- ADI電機(jī)運(yùn)動(dòng)控制解決方案 驅(qū)動(dòng)智能運(yùn)動(dòng)新時(shí)代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 功率器件熱設(shè)計(jì)基礎(chǔ)(九)——功率半導(dǎo)體模塊的熱擴(kuò)散
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
- 一文看懂電壓轉(zhuǎn)換的級(jí)聯(lián)和混合概念
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動(dòng)車
電動(dòng)工具
電動(dòng)汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖