你的位置:首頁 > 電源管理 > 正文

德州儀器:DC DC 轉換器 EMI 的工程師指南(二)——噪聲傳播和濾波

發(fā)布時間:2019-08-28 責任編輯:lina

【導讀】高開關頻率是在電源轉換技術發(fā)展過程中促進尺寸減小的主要因素。為了符合相關法規(guī),通常需要采用電磁干擾 (EMI) 濾波器,而該濾波器通常在系統總體尺寸和體積中占據很大一部分,因此了解高頻轉換器的 EMI 特性至關重要。
 
簡介
高開關頻率是在電源轉換技術發(fā)展過程中促進尺寸減小的主要因素。為了符合相關法規(guī),通常需要采用電磁干擾 (EMI) 濾波器,而該濾波器通常在系統總體尺寸和體積中占據很大一部分,因此了解高頻轉換器的 EMI 特性至關重要。
 
在本系列文章的第 2 部分,您將了解差模 (DM) 和共模 (CM) 傳導發(fā)射噪聲分量的噪聲源和傳播路徑,從而深入了解 DC/DC 轉換器的傳導 EMI 特性。本部分將介紹如何從總噪聲測量結果中分離出 DM/CM 噪聲,并將以升壓轉換器為例,重點介紹適用于汽車應用的主要 CM 噪聲傳導路徑。
 
DM 和 CM 傳導干擾
DM 和 CM 信號代表兩種形式的傳導發(fā)射。DM 電流通常稱為對稱模式信號或橫向信號,而 CM 電流通常稱為非對稱模式信號或縱向信號。圖 1 顯示了同步降壓和升壓 DC/DC 拓撲中的 DM 和 CM 電流路徑。Y 電容 CY1 和 CY2 分別從正負電源線連接到 GND,輕松形成了完整的 CM 電流傳播路徑 [1]。
 
德州儀器:DC DC 轉換器 EMI 的工程師指南(二)——噪聲傳播和濾波
圖 1:同步降壓 (a) 和升壓 (b) 轉換器 DM 和 CM 傳導噪聲路徑。
 
DM 傳導噪聲
DM 噪聲電流 (IDM) 由轉換器固有開關動作產生,并在正負電源線 L1 和 L2 中以相反方向流動。DM 傳導發(fā)射為“電流驅動型”,與開關電流 (di/dt)、磁場和低阻抗相關。DM 噪聲通常在較小的回路區(qū)域流動,返回路徑封閉且緊湊。
 
例如,在連續(xù)導通模式 (CCM) 下,降壓轉換器會產生一種梯形電流,且這種電流中諧波比較多。這些諧波在電源線上會表現為噪聲。降壓轉換器的輸入電容(圖 1 中的 CIN)有助于濾除這些高階電流諧波,但由于電容的非理想寄生特性(等效串聯電感 (ESL) 和等效串聯電阻 (ESR)),有些諧波難免會以 DM 噪聲形式出現在電源電流中,即使在添加實用的 EMI 輸入濾波器級之后也于事無補。
 
CM 傳導噪聲
另一方面,CM 噪聲電流 (ICM) 會流入接地 GND 線并通過 L1 和 L2 電源線返回。CM 傳導發(fā)射為“電壓驅動型”,與高轉換率電壓 (dv/dt)、電場和高阻抗相關。在非隔離式 DC/DC 開關轉換器中,由于 SW 節(jié)點處的 dv/dt 較高,產生了 CM 噪聲,從而導致產生位移電流。該電流通過與 MOSFET 外殼、散熱器和 SW 節(jié)點走線相關的寄生電容耦合到 GND 系統。與轉換器輸入或輸出端的接線較長相關的耦合電容也可能構成 CM 噪聲路徑。
 
圖 1 中的 CM 電流通過輸入 EMI 濾波器的 Y 電容(CY1 和 CY2)返回。另一條返回路徑為,通過 LISN 裝置(在本系列文章的第 1 部分中討論過)的 50Ω 測量阻抗返回,這顯然是不合需要的。盡管 CM 電流的幅值遠小于 DM 電流,但相對來說更難以處理,因為它通常在較大的傳導回路區(qū)域流動,如同天線一般,可能增加輻射 EMI。
 
圖 2 顯示了 Fly-Buck(隔離式降壓)轉換器的 DM 和 CM 傳導路徑。CM 電流通過變壓器 T1 的集總繞組間電容(圖 2 中的 CPS)流到二次側,并通過接地 GND 連接返回。圖 2 還顯示了 CM 傳播的簡化等效電路。
 
德州儀器:DC DC 轉換器 EMI 的工程師指南(二)——噪聲傳播和濾波
圖 2:Fly-Buck 隔離式轉換器 DM 和 CM 傳導噪聲傳播路徑 (a);CM 等效電路 (b)。
 
在實際的轉換器中,以下元件寄生效應均會影響電壓和電流波形以及 CM 噪聲:
 
·MOSFET 輸出電容 (COSS)。
·整流二極管結電容 (CD)。
·主電感繞組的等效并聯電容 (EPC)。
·輸入和輸出電容的等效串聯電感 (ESL)。
 
相關內容,我將在第 3 部分中進一步詳細介紹。
 
噪聲源和傳播路徑
 
正如第 1 部分所述,測量 DC/DC 轉換器傳導發(fā)射(對于 CISPR 32 標準,規(guī)定帶寬范圍為 150kHz 至 30MHz;對于 CISPR 25 標準,則規(guī)定頻率范圍為更寬的 150kHz 至 108MHz)時,測量的是每條電源線上 50Ω LISN 電阻兩端相對于接地 GND 的總噪聲電壓或“非對稱”干擾 [1]。
 
圖 3 顯示了 EMI 噪聲的產生、傳播和測量模型 [1]。噪聲源電壓用 VN 表示,噪聲源和傳播路徑阻抗分別用 ZS 和 ZP 表示。LISN 和 EMI 接收器的高頻等效電路僅為兩個 50Ω 電阻。圖 3 還顯示了相應的 DM 和 CM 噪聲電壓 VDM 和 VCM,它們由兩條電源線的總噪聲電壓 V1 和 V2 計算得出。DM(或“對稱”)電壓分量定義為 V1 和 V2 矢量差的一半;而 CM(或“非對稱”)電壓分量定義為 V1 和 V2 矢量和的一半 [2]。請注意,本文提供的 VDM 通用定義與 CISPR 16 標準規(guī)定的值相比,可能存在 6dB 的偏差。
 
德州儀器:DC DC 轉換器 EMI 的工程師指南(二)——噪聲傳播和濾波
圖 3:傳導 EMI 發(fā)射模型,其中顯示了噪聲源電壓、噪聲傳播路徑和 LISN 等效電路。
 
CM 噪聲源阻抗主要是容性阻抗,并且 ZCM 隨頻率的增大而減小。而 DM 噪聲源阻抗通常為阻性和感性阻抗,并且 ZDM 隨頻率的增大而增大。
 
要降低傳導噪聲水平,確保噪聲源本身產生較少的噪聲是其中的一種方法。對于噪聲傳播路徑,可以通過濾波或其他方法調整阻抗,從而減小相應的電流。例如,要降低降壓或升壓轉換器中的 CM 噪聲,需要降低 SW 節(jié)點 dv/dt(噪聲源)、通過減小接地寄生電容來增大阻抗、或者使用 Y 電容和/或 CM 扼流器進行濾波。本系列文章的第 4 部分將詳細介紹 EMI 抑制技術分類。
 
DM 和 CM EMI 濾波
無源 EMI 濾波是最常用的 EMI 噪聲抑制方法。顧名思義,這類濾波器僅采用無源元件。將這類濾波器設計用于電力電子設備時特別具有挑戰(zhàn)性,因為濾波器端接的噪聲源(開關轉換器)和負載(電線線)阻抗是不斷變化的 [2] [3]。
 
圖 4a 顯示了傳統的 p 型 EMI 輸入濾波器,以及整流和瞬態(tài)電壓鉗位功能(為直流/交流輸入供電的 DC/DC 轉換器提供 EMC 保護)。此外,圖 4 還包括本系列文章第 1 部分中的 LISN 高頻等效電路。
 
德州儀器:DC DC 轉換器 EMI 的工程師指南(二)——噪聲傳播和濾波
圖 4:傳統的 EMC 輸入濾波器 (a),包括 DM 等效電路 (b) 和 CM 等效電路 (c)。
 
典型 EMI 濾波器的兩個 CM 繞組相互耦合,這兩個繞組的 CM 電感分別為 LCM1 和 LCM2。DM 電感 LDM1 和 LDM2 分別是兩個耦合的 CM 繞組的漏電感,并且還可能包括分立的 DM 電感。CX1和 CX2 為 DM 濾波器電容,而 CY1 和 CY2 為 CM 濾波器電容。
 
通過將 EMI 濾波器去耦為 DM 等效電路和 CM 等效電路,可簡化其設計。然后,可以分別分析濾波器的 DM 和 CM 衰減。去耦基于這樣的假設,即 EMI 濾波器具有完美對稱的電路結構。在實現的對稱濾波器中,假設 LCM1 = LCM2 = LCM,CY1 = CY2 = CY,LDM1 = LDM2 = LDM,并且印刷電路板 (PCB) 布局也完美對稱。DM 等效電路和 CM 等效電路分別如圖 4b 和圖 4c 所示 [4]。
 
但是,嚴格來說,實際情況下并不存在完美對稱,因此 DM 和 CM 濾波器并不能完全去耦。而結構不對稱可能導致 DM 噪聲轉變成 CM 噪聲,或者 CM 噪聲轉變成 DM 噪聲。通常,與轉換器噪聲源和 EMI 濾波器參數相關的不平衡性可能導致這種模式轉變 [5]。
 
DM 和 CM 噪聲分離
傳導 EMI 的初始測量結果通常顯示 EMI 濾波器衰減不足。為了獲得適當的 EMI 濾波器設計,必須獨立研究待測設備 (EUT) 產生的傳導發(fā)射的 DM 和 CM 噪聲電壓分量。
 
將 DM 和 CM 分開處理有助于確定相關 EMI 源并對其進行故障排除,從而簡化 EMI 濾波器設計流程。正如我在上一部分強調的那樣,EMI 濾波器采用了截然不同的濾波器元件來抑制 DM 和 CM 發(fā)射。在這種情況下,一種常見的診斷檢查方法是將傳導噪聲分離為 DM 噪聲電壓和 CM 噪聲電壓。
 
圖 5 顯示了無源和有源兩種實現形式的 DM/CM 分離器電路,該電路有助于直接同時測量 DM 和 CM 發(fā)射。圖 5a 中的無源分離器電路 [4] 使用寬帶 RF 變壓器(如 Coilcraft 的 SWB1010 系列)在 EMI 覆蓋的頻率范圍內實現可接受的分離結果,其中 T1 和 T2 的特征阻抗 (ZO) 分別為 50Ω 和 100Ω。將一個 50Ω 的電阻與 DM 輸出端口的頻譜分析儀的輸入阻抗串聯,實現圖 3 中提供的 VDM 表達式的“除 2”功能。
 
德州儀器:DC DC 轉換器 EMI 的工程師指南(二)——噪聲傳播和濾波
圖 5:實現的用于分離 DM/CM 噪聲的無源 (a) 和有源 (b) 電路。
 
圖 5b 展示的是使用低噪聲、高帶寬運算放大器的有源分離器電路 [6]。U1 和 U2 實現了 LISN 輸出的理想輸入阻抗矩陣,而 U3 和 U4 分別提供 CM 和 DM 電壓。LCM 是一個 CM 線路濾波器(例如 Würth Elektronik 744222),位于差分放大器 U4 的輸入端,用于增大 DM 結果的 CM 抑制比(共模抑制比 [CMRR] ® - ¥dB)并最大限度地減少 CM/DM 交叉耦合。
 
實際電路示例 - 汽車同步升壓轉換器
 
考慮圖 6 中所示的同步升壓轉換器。該電路在汽車應用中很常見,通常作為預升壓穩(wěn)壓器在冷啟動或瞬態(tài)欠壓條件下保持電池電壓供應 [7]。
 
德州儀器:DC DC 轉換器 EMI 的工程師指南(二)——噪聲傳播和濾波
圖 6:汽車同步升壓轉換器(采用 50Ω/5μH LISN,用于 CISPR 25 EMI 測試)。
 
在車輛底盤接地端直接連接一個 MOSFET 散熱器,可以提高轉換器的熱性能和可靠性,但共模 EMI 性能會受到影響。圖 6 所示的原理圖中,包含升壓轉換器以及 CISPR 25 建議采用的兩個 LISN 電路(分別連接在 L1 和 L2 輸入線上)。
 
考慮到升壓轉換器的 CM 噪聲傳播路徑,圖 7 將 MOSFET Q1 和 Q2 替換為等效的交流電壓流和電流源 [8]。圖 7 中,還呈現了與升壓電感 LF、輸入電容 CIN 和輸出電容 COUT 相關的寄生分量部分。特別是 CRL-GND,它是負載電路與底盤 GND 之間的寄生電容,包括長負載線和布線以及下游負載配置(例如,二次側輸出連接到底盤接地的隔離式轉換器,或者用大型金屬外殼固定到底盤上的電機驅動系統)所產生的寄生電容。
 
德州儀器:DC DC 轉換器 EMI 的工程師指南(二)——噪聲傳播和濾波
圖 7:具有 LISN 的同步升壓拓撲的高頻等效電路。只有在 LISN 中流動的 CM 電流路徑與 CM 發(fā)射測量相關。
 
漏源開關(SW 節(jié)點)電壓的上升沿和下降沿代表主要的 CM 噪聲源。CP1 和 CP2 分別代表 SW 與底盤之間以及 SW 與散熱器之間的有效寄生電容。圖 8 顯示了 SW 節(jié)點電容(電場)耦合為主要 CM 傳播路徑時簡化的 CM 噪聲等效電路。
 
德州儀器:DC DC 轉換器 EMI 的工程師指南(二)——噪聲傳播和濾波
圖 8:連有 LISN 的同步升壓電路及其簡化 CM 等效電路。
 
總結
對于電力電子工程師而言,了解各種電源級拓撲中 DM 和 CM 電流的相關傳播路徑(包括與高 dv/dt 和 di/dt 開關相關的電容(電場)和電感(磁場)耦合)非常重要。在 EMI 測試過程中,將 DM 和 CM 發(fā)射分開處理有助于對相關 EMI 源進行故障排除,從而簡化 EMI 濾波器設計流程。 
 
 
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉