電動汽車快速充電系列文章之三:常見拓撲結(jié)構(gòu)和功率器件及其他設(shè)計考慮因素
發(fā)布時間:2021-08-03 來源:ON 責任編輯:wenwei
【導讀】在上一節(jié)中,已經(jīng)介紹了快速DCEV充電基礎(chǔ)設(shè)施的標準配置,以及未來可能的典型基礎(chǔ)設(shè)施。下面介紹當今快速DCEV充電器中使用的典型電源轉(zhuǎn)換器拓撲結(jié)構(gòu)和AC-DC和DC-DC的功率器件的概況。
什么是快速直流充電器中使用的常見拓撲結(jié)構(gòu)和功率器件?
在上一節(jié)中,已經(jīng)介紹了快速DCEV充電基礎(chǔ)設(shè)施的標準配置,以及未來可能的典型基礎(chǔ)設(shè)施。下面介紹當今快速DCEV充電器中使用的典型電源轉(zhuǎn)換器拓撲結(jié)構(gòu)和AC-DC和DC-DC的功率器件的概況。
有源整流三相PFC升壓拓撲結(jié)構(gòu)
前端三相PFC升壓級可以用多種拓撲結(jié)構(gòu)實現(xiàn),而且?guī)追N拓撲結(jié)構(gòu)可以滿足相同的電力要求。在“解密三相PFC拓撲結(jié)構(gòu)”中詳細介紹和討論了每種拓撲結(jié)構(gòu)的利弊和操作。圖11展示了快速直流電動車充電應(yīng)用中常見的PFC架構(gòu)。它們之間的一個首要區(qū)別是雙向性。T-中性點鉗制(T-NPC)和I-NPC拓撲結(jié)構(gòu)通過用開關(guān)取代一些二極管而適合雙向操作。6個開關(guān)的結(jié)構(gòu)是一個雙向的perse。
圖11. 用于快速直流電動車充電的典型三相功率因素校正(PFC)升壓拓撲結(jié)構(gòu)。
T-NPC(左上)、6開關(guān)(右上)和I-NPC(底部)
另一個影響設(shè)計和功率器件額定電壓的重要因素是架構(gòu)中的級數(shù)。6個開關(guān)的拓撲結(jié)構(gòu)是一個2級架構(gòu),通常用900 V或1200 V的開關(guān)來實現(xiàn)快速直流電動車充電器。這里SiC MOSFET-模塊具有低RDS on(6-40 mQ)區(qū)域的首選解決方案,特別是對于每塊15 kW以上的高功率范圍。這種集成表現(xiàn)出比分立解決方案更優(yōu)越的功率性能,提高了能效,簡化了設(shè)計,減小了整個系統(tǒng)的尺寸,并最大化可靠性。
T-中性點箝位(T-NPC)是一種3級拓撲結(jié)構(gòu),使用1200 V整流器(以雙向形式用開關(guān)代替),中性點路徑上有650 V開關(guān)背對背。I-NPC是一個3級架構(gòu),可能完全用650 V開關(guān)實現(xiàn)。650 V SiC MOSFET或IGBT與共包二極管代表了這些3級拓撲結(jié)構(gòu)的優(yōu)秀替代方案。
圖12. F1-2 PACK SiC MOSFET模塊半橋。1200 V,10 mQ
DC-DC拓撲結(jié)構(gòu)
在研究DC-DC轉(zhuǎn)換級時,主要采用了三種隔離拓撲結(jié)構(gòu):全橋LLC諧振轉(zhuǎn)換器、全橋移相雙有源橋(DAB)零電壓過渡(ZVT)轉(zhuǎn)換器和全橋移相ZVT轉(zhuǎn)換器(圖13、14和15)。
全橋LLC諧振
LLC轉(zhuǎn)換器在初級端實現(xiàn)了零電壓開關(guān)(ZVS),同時在諧振頻率及以下——在次級端實現(xiàn)了零電流開關(guān)(ZCS),從而在諧振頻率附近產(chǎn)生了非常高的峰值效率。作為一個純粹的頻率調(diào)制(FM)系統(tǒng),當系統(tǒng)工作點偏離諧振頻率時,這可能是需要寬輸出電壓操作時的情況,LLC的能效就會下降。
然而,先進的混合調(diào)制方案使今天的脈沖調(diào)制(PWM)與調(diào)頻相結(jié)合,限制了最大頻率失控和高損耗。不過,這些混合實現(xiàn)方式還是給已經(jīng)有時很麻煩的LLC控制算法增加了復雜性。
此外,并聯(lián)的LLCs轉(zhuǎn)換器的電流共享和同步也不是件容易的事。一般來說,當有可能在相對較小的電壓范圍內(nèi)工作時,和/或當具備實施結(jié)合調(diào)頻和PWM的先進控制策略的開發(fā)技能時,LLC是一種難以超越的設(shè)計。它不僅可以提供最高的能效,而且從各個角度看都是一個非常全面的解決方案。LLC可以作為CLLC以雙向形式實現(xiàn),這是另一種復雜的拓撲結(jié)構(gòu)。
圖13. 全橋LLC轉(zhuǎn)換器
帶有次級同步整流拓撲結(jié)構(gòu)的移相全橋DAB也非常典型。這些都是用PWM工作,一般來說,需要比LLC轉(zhuǎn)換器更簡單的控制。DAB可以被認為是傳統(tǒng)的全橋移相ZVT轉(zhuǎn)換器的演變,但漏電感器在初級端,這簡化了繁瑣的次級端整流,減少了二次開關(guān)或二極管的必要額定擊穿電壓。由于實現(xiàn)了ZVT,這些轉(zhuǎn)換器可以在很寬的輸出電壓范圍內(nèi)提供穩(wěn)定的高能效。這對于支持800 V和400 V電池電壓水平的充電器來說是個方便的因素。
DAB的PWM工作帶來了好處。首先,它傾向于使轉(zhuǎn)換器的電磁干擾(EMI)頻譜比調(diào)頻系統(tǒng)中的更緊密。此外,用固定的開關(guān)頻率,系統(tǒng)在低負載時的行為更容易解決。通過同步整流,DAB是一種雙向的原生拓撲結(jié)構(gòu),是快速電動汽車充電器的最通用的替代方案和合適的解決方案之一。
圖14.全橋移相式DAB ZVT轉(zhuǎn)換器
對于單向操作,傳統(tǒng)的全橋移相ZVT(圖15)仍然是一個可用的選擇,但滲透率越來越低。這種拓撲結(jié)構(gòu)的工作與DAB類似,但位于次級端的電感器在整流中帶來一個顯著的差異。電感器在二極管上設(shè)置了高的反向電壓,這將與占空比成正比和反比,因此,根據(jù)工作條件,二極管上的反向電壓可能超過輸出電壓的兩到三倍。
這種情況在高輸出電壓的系統(tǒng)中(如電動車充電器)可能具有挑戰(zhàn)性,通常多個次級繞組(具有較低的輸出電壓)被串聯(lián)起來。這樣的配置并不那么方便,特別是如果考慮到功率和電壓的額定值,不同的拓撲結(jié)構(gòu)含單一輸出將提供相同或更好的性能。
SiC-模塊代表了上述DC-DC電源轉(zhuǎn)換級中全橋的一個非常合適和常見的解決方案,起價為15 kW。更高的頻率有助于縮小變壓器和電感器的尺寸,從而縮小整個解決方案的外形尺寸。
圖15. 全橋移相ZVT轉(zhuǎn)換器
拓撲結(jié)構(gòu)的變體
所討論的拓撲結(jié)構(gòu)存在多種變體,帶來額外的優(yōu)勢和折沖。圖16顯示了用于快速電動車充電的全橋LLC轉(zhuǎn)換器的一個常見替代方案。在移相中,開關(guān)在輸入電壓的一半以下,并使用600 V和650 V的斷電電壓器件。650 V SiC MOSFET、650 V SuperFET 3快速恢復(FR)MOSFET和650 V FS4 IGBT將有助于解決不同的系統(tǒng)要求。
同樣,用于出極端的二極管和整流器需要650 V的阻斷電壓等級。這些3級架構(gòu)允許單極開關(guān),這有助于減少峰值電流和電流紋波,這將導致用更小的變壓器。這種拓撲結(jié)構(gòu)的主要缺點之一是,與具有較少電源開關(guān)的2級版本相比,控制算法需要額外的復雜程度。雙有源橋以及雙有源橋可以很容易地在初級端和次級端并聯(lián)或堆疊,以最配合快速電動汽車充電器的電流和電壓需求。
圖16. 3級全橋LLC
這種變體在初級端堆疊(只有一半的輸入電壓應(yīng)用于每個變壓器),在次級端并聯(lián)。
次級端整流
關(guān)于次級端整流,如圖15所示,可以有多種解決方案,而且都可以使用不同的拓撲結(jié)構(gòu)。對于400 V和800 V的電池水平和全橋整流,650 V和1200 V的SiC肖特基二極管通常是獨特的性價比解決方案。
由于其零反向恢復特性,與硅基替代品相比,這些器件大大增強了整流性能和能效,大大降低了損耗和整流級的復雜性。硅基二極管,如Hyperfast、UltraFast和Stealth,可以作為成本非常有限的項目的替代品,但要犧牲性能和復雜性。采用中心抽頭整流的解決方案(圖15)對于高電壓輸出整流級來說并不方便。
與全橋整流不同的是,在全橋整流中,二極管的標準反向電壓等于輸出電壓,而在中心抽頭配置中,二極管要承受這個數(shù)值的兩倍。常規(guī)的全橋移相轉(zhuǎn)換器(電感在次級端),正如所解釋的那樣,在兩種整流方法(全橋或中心抽頭整流)中都需要更高的擊穿電壓二極管。為了克服常規(guī)全橋移相轉(zhuǎn)換器對1200 V或1700 V額定二極管的需求,幾個輸出將被串聯(lián)起來。
其他重要的設(shè)計考慮因素
除了電源轉(zhuǎn)換器中的拓撲結(jié)構(gòu)和開關(guān)器件外,在開發(fā)快速電動車充電器時,還有其他重要領(lǐng)域需要考慮,尤其是在使用SiC開關(guān)在高頻率下工作時。
門極驅(qū)動系統(tǒng)
在所有的拓撲結(jié)構(gòu)中,驅(qū)動系統(tǒng)仍然是快速直流電動車充電器的一個重要方面,對系統(tǒng)性能有直接影響。
隔離
在隔離的主題下,首先要考慮的問題之一。鑒于快速直流電動車充電器所討論的高功率和高電壓,電隔離對于高端驅(qū)動器是必須的。對于低端同類產(chǎn)品,盡管從安全角度看并非總是嚴格必要的,但常見的做法是使用與高端相同的門極驅(qū)動系統(tǒng)和電路。
這種方法帶來了多種好處,包括解決方案的實施和系統(tǒng)的穩(wěn)健性。一方面,它有利于同一半橋上的開關(guān)器件之間的延遲匹配。這簡化了PWM序列和死區(qū)時間的控制和實施,以防止擊穿事件。此外,隔離驅(qū)動器通過最大限度地提高其共模瞬態(tài)抗擾度(CMTI)來增強系統(tǒng)的堅固性,這在使用快速開關(guān)寬禁帶技術(shù)在高dV/dt 驅(qū)動時特別重要,如SiC。
這里還需要指出的是,采用開爾文連接的電源開關(guān)需要一個浮動或電隔離的驅(qū)動器(在高端和低端)來獲得配置的好處,因為它將大大減少損耗和提高傳播時間。
片上保護和功能
門極驅(qū)動器的另一個關(guān)鍵考慮因素是片上集成功能(除電隔離外)和保護。根據(jù)系統(tǒng)的要求和開關(guān)的類型,可能需要過電流保護(“DESAT”)—— IGBT和SiC MOSFET的典型保護——米勒鉗制(避免錯誤開啟)。包括這些或其他必要的封裝功能可以實現(xiàn)緊湊的系統(tǒng),并最大限度地減少布局中的寄生電感,這是使用SiC的高開關(guān)頻率系統(tǒng)的基本要求。
在數(shù)字控制的系統(tǒng)中,內(nèi)置保護也非常方便,可以提供板載保護。在系統(tǒng)能效方面,門極驅(qū)動器的接受端和源端能力對于通過快速充電和放電寄生門極電容實現(xiàn)快速開關(guān)轉(zhuǎn)換至關(guān)重要。在使用SiC技術(shù)時,這在高功率應(yīng)用中特別重要,因為這比基于Si的IGBT或SJ MOSFET實現(xiàn)更快的轉(zhuǎn)換。
電隔離門極驅(qū)動器系列具有3.5 kV和5 kV額定值的NCD57XXX和NCD51XXX為開發(fā)快速電動車充電器帶來設(shè)計靈活性和系統(tǒng)可靠性,在片上集成了多種功能和保護措施,并顯示出高達9 A的驅(qū)動電流能力。該產(chǎn)品組合包括單通道驅(qū)動器,如NCD57000/1、NCD5708x、NCD5709x、NCP51152/7,以及雙通道驅(qū)動器,如NCP51561、NCP51563和NCD57252/256,以滿足所有使用情況。
圖17. 電隔離的單通道和雙通道門驅(qū)動器框圖
驅(qū)動器電源
與門極驅(qū)動器相鄰的一個話題是驅(qū)動它們所需的隔離電源。SiC開關(guān)的最佳性能是通過+20 V – 5 V的偏置電壓實現(xiàn)的,而IGBT通常需要+15 V/0 V或15 V。更多的細節(jié)可以在“Gen11200VSiCMOSFETs & Modules: 特性和驅(qū)動建議”。
同樣,對于門極驅(qū)動器來說,電源需要緊湊和堅固,確保在所有工作條件下有穩(wěn)定的電壓軌。圍繞NCV3064開關(guān)穩(wěn)壓器的電源,如LVDCDC3064-IGBT和LVDCDC3064-SIC有助于滿足這些需求。
保護措施
快速直流電動車充電的另一個重要考慮因素是系統(tǒng)中必要的安全保護,尤其是法規(guī)所規(guī)定的安全保護。強制性保護是針對車外的接地故障電流(GFC),以防止對人體產(chǎn)生危險的電擊風險。
特別是,充電電路中斷裝置(CCID)是專門為EV充電而開發(fā)的,IEC61851-1(前面討論過)和UL 2231-1/2標準分別對其在歐洲/亞洲和北美的實施進行了規(guī)范。FAN4147和NCS37014 GFC中斷器滿足這些法規(guī)的要求,為開發(fā)符合安全要求的EVSE提供了現(xiàn)成的解決方案。
輔助電源
輔助電源單元(PSU)在電力系統(tǒng)中無處不在,快速直流電動車充電也不例外。隔離反激拓撲結(jié)構(gòu)是方便和可靠的選擇,可以提供低壓系統(tǒng)所需的典型的10-40 W。
特別是,對于快速直流電動車充電,直流母線的電壓水平是影響整個系統(tǒng)的主要因素之一?,F(xiàn)在的趨勢是提高這些水平,以減少特定功率水平的峰值電流并提高能效。
如今,直流母線電壓水平高達800 V(甚至更高)是很常見的,并不是所有的傳統(tǒng)方案都適合電動汽車充電。在這里,圍繞NCP1362準諧振谷初級端開關(guān)或NCP1252和NCP12700次級端控制器開發(fā)的PSU可以幫助解決這些需求。在開關(guān)方面,具有高RDS on(160 mOhms)的1200V SiC MOSFET正在被迅速采用,因為它們帶來了出色的性價比,是900 V DC系統(tǒng)的最佳方案。
歸結(jié)一切
我們已經(jīng)看到了電動車市場的增長是如何加速的,以及為什么隨著更多的電動車上路,快速直流充電需要(也將)保持吸引力。
在過去的大多月份里,指向這一方向的新聞如雨后春筍般涌現(xiàn),其中一個是美國總統(tǒng)宣布的到2030年建立50萬個直流充電樁網(wǎng)絡(luò)的計劃。其最終目標是推動電動車成為主流,擺脫以內(nèi)燃機為基礎(chǔ)的交通工具,并應(yīng)對氣候變化。
快速和超快速的直流充電樁是電動汽車的一個關(guān)鍵支柱,也是完成生態(tài)系統(tǒng)的一個不可或缺的元素,在家庭中可以使用較低功率的交流充電替代品,因為可以在較長時間內(nèi)充電。作為一個新生的、快速發(fā)展的市場,快速直流電動車充電器的要求和使用案例在不斷升級,留下了一個需要各種解決方案和不同優(yōu)化的空間。
不過,所有這些的共同點將是越來越高的功率、電壓水平和能效。此外,隨著此類基礎(chǔ)設(shè)施的大規(guī)模推出,競爭格局變得更加嚴酷,安裝的投資回報率也將需最大化,預計對尺寸、重量、成本和可靠性的限制也會加強。
現(xiàn)在,SiC功率技術(shù)正在成熟,其價格正在達到有吸引力的水平,這為先進的SiC功率集成模塊技術(shù)的發(fā)展留下了空間。更高的能效和優(yōu)越的熱性能,使充電系統(tǒng)更輕、更小、成本更優(yōu)化,可提供高達400 kW的功率。除了SiC技術(shù)和功率模塊的內(nèi)在優(yōu)勢,充電器的可靠性仍然是有效和廣泛部署電動車的基石。
安森美半導體不僅是SiC技術(shù)和功率集成模塊的一個領(lǐng)先供應(yīng)商,而且在質(zhì)量上與眾不同。作為極少數(shù)擁有SiC完整供應(yīng)鏈的供應(yīng)商之一,安森美半導體確保我們的SiC分立及模塊產(chǎn)品的最高質(zhì)量和可靠性標準,以及卓越的運營和靈活性。
免責聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進行處理。
推薦閱讀:
特別推薦
- AMTS 2025展位預訂正式開啟——體驗科技驅(qū)動的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲能解決方案
- 功率器件熱設(shè)計基礎(chǔ)(六)——瞬態(tài)熱測量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進入量產(chǎn)
- 中微半導推出高性價比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級分流器以及匹配的評估板
- 功率器件熱設(shè)計基礎(chǔ)(八)——利用瞬態(tài)熱阻計算二極管浪涌電流
- AHTE 2025展位預訂正式開啟——促進新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
生產(chǎn)測試
聲表諧振器
聲傳感器
濕度傳感器
石英機械表
石英石危害
時間繼電器
時鐘IC
世強電訊
示波器
視頻IC
視頻監(jiān)控
收發(fā)器
手機開發(fā)
受話器
數(shù)字家庭
數(shù)字家庭
數(shù)字鎖相環(huán)
雙向可控硅
水泥電阻
絲印設(shè)備
伺服電機
速度傳感器
鎖相環(huán)
胎壓監(jiān)測
太陽能
太陽能電池
泰科源
鉭電容
碳膜電位器