零頻率IF
發(fā)布時(shí)間:2018-03-16 來源:John Dunn 責(zé)任編輯:wenwei
【導(dǎo)讀】超外差原理是,任何頻率的輸入信號(hào)都與“本地振蕩器”的頻率“混合”,在稱為IF的“中頻”產(chǎn)生新的信號(hào)。本設(shè)計(jì)實(shí)例將介紹一種混頻安排,其中本地振蕩器以輸入信號(hào)的頻率運(yùn)行,產(chǎn)生零赫的IF。
超外差接收機(jī)中使用的縮寫詞“IF”代表“中頻”,所以對(duì)于一個(gè)追求語言純粹的人,本文標(biāo)題中出現(xiàn)了“頻率頻率”的并列就顯得荒謬。但是我決定不在意。談?wù)撘豢钪蓄l器件或電路或系統(tǒng)或其它任何東西都太簡單了,所以我要懇請(qǐng)你的寬容。
超外差原理是,任何頻率的輸入信號(hào)都與“本地振蕩器”的頻率“混合”,在我們稱為IF的“中頻”產(chǎn)生新的信號(hào)。在典型的AM收音機(jī)中,IF是455kHz;而在典型的FM收音機(jī)中,IF是10.7MHz。在這兩種情況下,本地振蕩器都以輸入信號(hào)的頻率運(yùn)行,但由IF移頻。如果你在紐約市收聽WINS的AM電臺(tái),選臺(tái)到1010kHz,則本地振蕩器將以1465kHz的頻率工作。
但這里我們將看到一種混頻安排,其中本地振蕩器以輸入信號(hào)的頻率運(yùn)行,產(chǎn)生零赫的IF,正如標(biāo)題所說。
下圖是用于超外差接收的零頻率IF級(jí),只要其頻率wm = 2×pi×fm足夠接近第二本地振蕩器頻率wc= 2×pi×fc,輸入#1就被傳遞到輸出。輸入頻率有多接近必須借助一對(duì)低通濾波器來設(shè)置。兩個(gè)低通濾波器的截止頻率越低,選擇范圍越窄。
圖1:零頻率IF和公式,首次考查。
理想的乘法器是我們的混頻器。其操作基于三角函數(shù)公式:cos a x cos b = ½ x (cos (a+b) + cos (a-b)) ,如圖1所示。
但是,可以用另一種方式應(yīng)用這種代數(shù)關(guān)系。我們可以用“a”代表“wc”,“b”代表“wm”,或者反過來,都沒關(guān)系。
圖2:零頻率IF和公式,第二次考查。
在這種情況下,我們使用等價(jià)三角函數(shù)公式:cos b x cos a = ½(cos (b+a) + cos (b-a))。
這種差別并沒產(chǎn)生什么不同,圖1和圖2的最終結(jié)果相同。采用 SPICE的零頻率IF仿真如圖3所示。
圖3:采用 5kHz低通濾波器零頻率IF仿真。
...或更窄的帶通,像圖4那樣。
圖4:采用約500Hz低通濾波器的零頻率IF仿真。
整個(gè)帶通是低通濾波器截止頻率的兩倍。使用1MHz的本地振蕩器頻率,針對(duì)圖中顯示的單個(gè)RC濾波器,計(jì)算出的帶通如圖5所示。
圖5:零頻率IF帶通。
要注意10:1的帶寬比與10:1的低通濾波器截止頻率比,它們?yōu)椋?/(2 pi x 3160 x 0.01E-6) = 5037 Hz ...和... 1/(2 pi x 3160 x 0.1E-6) = 503.7Hz。
這項(xiàng)技術(shù)被應(yīng)用于美國海軍CVA VAST測試系統(tǒng)的Building Block 38(BB38)中,BB38被稱為低頻波分析儀。但零頻IF并非 源于此,而是借鑒現(xiàn)已停產(chǎn)的惠普HP3590A分析儀。
然而,戲法只能玩一次。四混頻器可能會(huì)受到DC偏移的干擾。為避免這個(gè)問題,用極低頻高通角對(duì)低通濾波器實(shí)施直流阻斷。結(jié)果,IF帶通在中心頻率處具有無限深但非常窄的陷波。
本文轉(zhuǎn)載自電子技術(shù)設(shè)計(jì)。
推薦閱讀:
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗(yàn)科技驅(qū)動(dòng)的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲(chǔ)能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級(jí)分流器以及匹配的評(píng)估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動(dòng)車
電動(dòng)工具
電動(dòng)汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖