支持RF無線傳輸?shù)膒H傳感器參考設(shè)計(jì)
發(fā)布時(shí)間:2020-02-20 來源:Erbe D. Reyta 和 Mark O. Ochoco 責(zé)任編輯:wenwei
【導(dǎo)讀】如果系統(tǒng)精度、效率和可靠性至關(guān)重要,設(shè)計(jì)傳感器節(jié)點(diǎn) 無線數(shù)據(jù)傳輸以用于遠(yuǎn)程監(jiān)控會(huì)是一個(gè)相當(dāng)大的挑戰(zhàn)。溶 液的pH值是許多行業(yè)需要考慮的一種測量,例如農(nóng)業(yè)或醫(yī) 療領(lǐng)域。本文的主要目的是評估pH玻璃探針的特性,從而 解決硬件和軟件設(shè)計(jì)的不同挑戰(zhàn),并提出一種利用射頻收 發(fā)器模塊從探針無線傳輸數(shù)據(jù)的解決方案。
簡介
本文第一部分介紹pH探針,然后探討與前端信號(hào)調(diào)理電路相關(guān) 的各種設(shè)計(jì)挑戰(zhàn),以及如何實(shí)現(xiàn)低成本、高精度、高可靠性的數(shù) 據(jù)轉(zhuǎn)換。為了提高數(shù)據(jù)處理的精度,討論中還會(huì)涉及校準(zhǔn)技術(shù), 例如一般多項(xiàng)式擬合,即利用最小二乘法逼近分散的預(yù)定義數(shù) 據(jù)來校準(zhǔn)pH值。本文最后一部分提供一種無線監(jiān)控系統(tǒng)參考電 路設(shè)計(jì)。
了解pH探針
pH值定義
水溶液可分為酸性、堿性和中性三類。在化學(xué)中,酸堿度通過一 種數(shù)值尺度來衡量,稱為pH值。依據(jù)嘉士伯基金會(huì)的定義,pH值 代表氫離子濃度。此尺度是一個(gè)對數(shù)尺度,范圍為1到14。pH值的 數(shù)學(xué)表達(dá)式為:pH = –log(H+)。因此,如果氫離子濃度為1.0 × 10–2 摩爾/升,則pH = –log(1.0 × 10–2) = 2。蒸餾水等水溶液的pH值為 7,這是一個(gè)中性值。pH值小于7的溶液為酸性溶液,大于7的溶液 為堿性溶液。對數(shù)尺度反映了一種溶液相對于另一種溶液的酸 性程度。例如,pH值為5的溶液,其酸度是pH值為6的溶液的10倍,是pH值 為8的溶液的1000倍。
pH指示器
有很多辦法可測量水溶液的pH值,包括通過石蕊試紙指示器或 使用玻璃探針。
石蕊試紙
石蕊試紙指示器通常由從地衣提取的染液制成,可用來指示pH 水平。一旦與溶液接觸,試紙就會(huì)發(fā)生化學(xué)反應(yīng),導(dǎo)致其顏色改 變,由此指示pH水平。這一類大體上包括兩種方法:一種是將已 知pH值對應(yīng)的標(biāo)準(zhǔn)顏色與利用緩沖溶液浸入測試液體的指示器 顏色進(jìn)行比對;另一種是將pH試紙先浸沒在指示器中,然后浸入 測試液體中,將其顏色與標(biāo)準(zhǔn)顏色進(jìn)行比對。雖然上述兩種方法 很容易實(shí)現(xiàn),但是溫度和測試溶液中的雜質(zhì)很容易引起誤差。
pH玻璃探針
最常用的pH指示器是pH探針。它由一個(gè)玻璃測量電極和一個(gè)參 比電極構(gòu)成。典型玻璃探針由玻璃薄膜及其中封入的鹽酸(HCl) 溶液組成。外殼內(nèi)部有一根鍍AgCl的銀線,其充當(dāng)參比電極并與 HCL溶液接觸。玻璃膜外部的氫離子擴(kuò)散通過玻璃膜,置換相應(yīng) 數(shù)量的鈉離子(Na+),多數(shù)玻璃中一般都存在鈉離子。這種正離子 很敏銳,大部分限定在玻璃表面上濃度較低的一側(cè)薄膜上。Na+ 的多余電荷在傳感器輸出端產(chǎn)生一個(gè)電壓。探針類似于一塊電池。當(dāng)把探針置于溶液中時(shí),測量電極產(chǎn)生 一個(gè)電壓,其大小取決于溶液中氫的活性,然后將該電壓與參 比電極的電位進(jìn)行比較。隨著溶液酸性的增強(qiáng)(pH值變低),玻 璃電極電位相對于參比電極陽性增強(qiáng)(+mV);隨著溶液堿性的增 強(qiáng)(pH值變高),玻璃電極電位相對于參比電極陰性增強(qiáng)(-mV)。 這兩個(gè)電極之差即為測得電位。在理想情況下,典型的pH探針在 25°C下會(huì)產(chǎn)生59.154 mV/pH單位,通常用能斯脫方程表示如下:
其中:
E = 氫電極電壓,活性未知
a = ±30 mV,零點(diǎn)容差
T = 環(huán)境溫度(25°C)
n = 1(25°C),價(jià)(離子上的電荷數(shù))
F = 96485庫侖/摩爾,法拉第常數(shù)
R = 8.314 伏特-庫侖/°K摩爾,阿伏加德羅氏數(shù)
pH = 未知溶液的氫離子濃度
pHISO = 7,參比氫離子濃度
方程表明,產(chǎn)生的電壓取決于溶液的酸度和堿度,并以已知方式 隨氫離子活性而變化。溶液溫度的變化會(huì)改變其氫離子的活性。 當(dāng)溶液被加熱時(shí),氫離子運(yùn)動(dòng)速度加快,結(jié)果導(dǎo)致兩個(gè)電極間電 位差的增加。另外,當(dāng)溶液冷卻時(shí),氫活性降低,導(dǎo)致電位差下 降。根據(jù)設(shè)計(jì),在理想情況下,當(dāng)置于pH值為7的緩沖溶液中時(shí), 電極會(huì)產(chǎn)生零伏特電位。
典型pH探針的規(guī)格如下表所示。
表1. pH玻璃探針的典型規(guī)格
pH探針在本研究中起著重要作用,因?yàn)閿?shù)據(jù)可靠性取決于傳感 器的精度和可靠性。選擇pH探針時(shí),有兩個(gè)重要因素需要考慮: 緩沖溶液溫度改變之后的穩(wěn)定時(shí)間及其pH值改變之后的穩(wěn)定時(shí) 間。作為例子,下面的數(shù)據(jù)摘自Jenway的應(yīng)用筆記“Jenway高性能 pH電極評估”1 ,顯示了探針在給定測試條件下發(fā)生溫度變化后 的穩(wěn)定性能。制備一種溶液,其緩沖液在20°C時(shí)的pH值為7,在 60°C時(shí)的pH值為4。讓各電極在以200 rpm轉(zhuǎn)速攪拌的pH 7緩沖液 中穩(wěn)定。然后用去離子水清洗電極,并將其轉(zhuǎn)移到pH 4緩沖液的 等分試樣中放置4分鐘。再次用去離子水清洗電極,然后將其放 回到pH 7緩沖液中。評估讀數(shù)持續(xù)10秒保持穩(wěn)定所需的時(shí)間。對 每個(gè)探針重復(fù)測試三次。
表2. 緩沖溶液溫度改變之后的穩(wěn)定時(shí)間
表3. 緩沖溶液pH值改變之后的穩(wěn)定時(shí)間
在所示給定條件下,Jenway探針的性能與通用pH探針相比,響應(yīng) 時(shí)間要快最多50%。使用類似這樣的儀表會(huì)非常有利,因?yàn)槠錁?本吞吐速率很高,分析數(shù)據(jù)所需的時(shí)間會(huì)大大縮短。
傳感器模擬信號(hào)調(diào)理電路
為了理解信號(hào)調(diào)理電路,必須知道傳感器探針的等效電路圖。 如上一節(jié)所述,pH探針由玻璃制成,可形成極高的電阻,范圍從1 MΩ到1 GΩ不等,充當(dāng)與pH電壓源串聯(lián)的電阻,如圖1所示。
圖1. pH探針等效電路配置
即使非常小的電路電流流經(jīng)電路中各器件的高電阻(尤其是測 量電極的玻璃膜),這些電阻上也會(huì)產(chǎn)生相對較大的壓降,嚴(yán) 重降低儀表測得的電壓。更糟糕的是,測量電極產(chǎn)生的電壓差 非常小,處于毫伏范圍(理想情況下,室溫時(shí)每pH單位對應(yīng)59.16 mV)。用于此任務(wù)的儀表必須非常靈敏,并且有超高輸入電阻。
模數(shù)轉(zhuǎn)換
對于此類應(yīng)用,給定傳感器的響應(yīng)時(shí)間時(shí),數(shù)據(jù)采樣速率將是一 個(gè)問題。假設(shè)傳感器分辨率為0.001 V rms,ADC滿量程電壓范圍為 1 V,則實(shí)現(xiàn)9.96位的有效分辨率無需高分辨率ADC。無噪聲分辨 率單位為位,用下式定義:無噪聲分辨率 = log2 [滿量程輸入電壓 范圍/傳感器峰峰值電壓輸出噪聲]。ADC采樣速率對低功耗應(yīng)用 可能是一個(gè)重要因素,因?yàn)锳DC的采樣速率與功耗直接相關(guān)。在 傳感器的響應(yīng)時(shí)間一定時(shí),典型ADC采樣速率可設(shè)置為其最低吞 吐速率??刹捎眉葾DC的微控制器以減少器件數(shù)量。
收發(fā)器
傳輸pH和溫度數(shù)據(jù)需要收發(fā)器,控制收發(fā)器需要微控制器。收 發(fā)器和微控制器的選擇涉及到一些重要考量。
選擇收發(fā)器必須考慮如下因素:
● 工作頻率
● 最大距離范圍
● 數(shù)據(jù)速率
● 許可
工作頻率
設(shè)計(jì)RF傳輸必須確定工作頻率(OF),sub-GHz或2.4 GHz頻率能否滿 足應(yīng)用要求。在需要高數(shù)據(jù)速率和使用藍(lán)牙等寬帶寬的應(yīng)用中, 2.4 GHz頻率是最佳選擇。但工業(yè)應(yīng)用通常使用sub-GHz頻率,因 為可用的專有協(xié)議能方便地提供網(wǎng)絡(luò)鏈路層。專有系統(tǒng)主要使用 sub-GHz范圍內(nèi)的ISM頻率,即433 MHz、868 MHz和915 MHz。
最大距離范圍
Sub-1 GHz頻率支持25 km以上的長距離、大功率傳輸。當(dāng)用于點(diǎn)對 點(diǎn)或星形拓?fù)鋾r(shí),這些頻率可有效穿透墻壁和其他障礙物。
數(shù)據(jù)速率
數(shù)據(jù)速率也需要確定,它會(huì)影響收發(fā)器的傳輸距離能力和功耗。 數(shù)據(jù)速率較高時(shí),功耗較低,可以用于短距離傳輸;而數(shù)據(jù)速率 較低時(shí),功耗較高,可以用于長距離傳輸。要降低功耗,提高數(shù) 據(jù)速率是一個(gè)好辦法,因?yàn)樗辉诤芏痰臅r(shí)間內(nèi)以突發(fā)方式消耗 電流,但這樣做也會(huì)縮短無線電覆蓋距離。
收發(fā)器功耗
收發(fā)器功耗對電池供電應(yīng)用非常重要。這在許多無線應(yīng)用中也是 一個(gè)考慮因素,因?yàn)樗鼪Q定了數(shù)據(jù)速率和距離范圍。收發(fā)器有兩 個(gè)功率放大器(PA)選項(xiàng)以提供更大的使用靈活性。單端PA可以輸 出最多13 dBm的RF功率,差分PA可以輸出最多10 dBm的功率。表 4總結(jié)了一些PA輸出功率與收發(fā)器IDD電流消耗的關(guān)系。為完整起 見,表中同時(shí)給出了接收模式的電流消耗。
表4. PA輸出功率與收發(fā)器IDD電流消耗小結(jié)
許可
Sub-GHz包括433 MHz、868 MHz和915 MHz的免許可ISM頻段。它廣 泛用于工業(yè)中,非常適合各種無線應(yīng)用。它可以用在世界上的不 同地區(qū),因?yàn)樗蠚W洲ETSI EN300-220法規(guī)、北美FCC Part 15法 規(guī)及其他類似監(jiān)管標(biāo)準(zhǔn)。
微控制器
如圖2所示,RF系統(tǒng)的核心是一個(gè)處理器單元或微控制器(MCU), 其處理數(shù)據(jù)并運(yùn)行與收發(fā)器(用于RF傳輸)和pH參考設(shè)計(jì)(RD)板 (用于傳感器測量)接口的軟件堆棧。
圖2. 無線傳感器數(shù)據(jù)采集和傳輸框圖
選擇微控制器必須考慮如下因素:
● 外設(shè)
● 存儲(chǔ)器
● 處理能力
● 功耗
外設(shè)
微控制器應(yīng)集成SPI總線之類的外設(shè)。收發(fā)器和pH參考設(shè)計(jì)板均 通過SPI連接,因此需要兩個(gè)SPI外設(shè)。
存儲(chǔ)器
借助適當(dāng)大小的存儲(chǔ)器,微控制器執(zhí)行協(xié)議處理和傳感器接口 任務(wù)。Flash和RAM是微控制器的兩個(gè)極重要組成部分。為確保系 統(tǒng)不會(huì)用盡存儲(chǔ)空間,使用128 kB內(nèi)存。這必定會(huì)讓應(yīng)用和軟件 算法流暢運(yùn)行,并且為可能的升級和功能增加(以便消除系統(tǒng)問 題)留有余地。
架構(gòu)和處理能力
微處理器必須足夠快,以便處理復(fù)雜的計(jì)算和流程。該系統(tǒng)使用 32位微處理器。雖然位數(shù)較低的處理器可能也可行,但本系統(tǒng)選 擇使用32位以支持潛在更高的應(yīng)用和算法需求。
微處理器功耗
微處理器的功耗應(yīng)非常低。對于那些依賴電池供電且必須在無 維保的情況下運(yùn)行數(shù)年的應(yīng)用,功耗至關(guān)重要。
其他系統(tǒng)考量
差錯(cuò)校驗(yàn)
通信處理器在發(fā)射模式下將CRC附加于有效載荷,在接收模式下 檢測CRC。有效載荷數(shù)據(jù)加上16位CRC可以利用曼徹斯特編碼技 術(shù)進(jìn)行編碼/解碼。
成本
系統(tǒng)應(yīng)當(dāng)使用最少的器件和最小的板尺寸,因?yàn)楫?dāng)成本是關(guān)鍵 要求之一時(shí),這些常常是決定性因素。不要使用分立器件,必須 考慮由MCU和無線器件組成的集成解決方案。這樣可消除無線 電和MCU之間互連的設(shè)計(jì)難題,簡化電路板設(shè)計(jì),使設(shè)計(jì)流程更 直接了當(dāng),并縮短焊線,使其更不易受干擾影響。利用集 ARM® Cortex®-M MCU和無線電收發(fā)器于一體的單個(gè)芯片,可以減少電路 板器件數(shù)量,簡化電路板布局布線,降低總成本。
校準(zhǔn)
執(zhí)行校準(zhǔn)例程是實(shí)現(xiàn)高精度的關(guān)鍵環(huán)節(jié)之一。能斯脫方程所描 述的pH溶液的一個(gè)特征是其高度依賴于溫度。傳感器探針僅給 出一個(gè)恒定的失調(diào),可認(rèn)為該失調(diào)在所有溫度水平都是恒定的。 由于其高度依賴于溫度,本系統(tǒng)必須有一個(gè)確定溶液溫度的傳 感器。
可以使用直接代入能斯脫方程之類的方法,但由于溶液的非理想 特性,可能會(huì)產(chǎn)生某種程度的誤差。這種方法僅需測量系統(tǒng)的失 調(diào)和未知溶液的溫度。為確定該傳感器引入的失調(diào),需要一種pH 值為7的緩沖溶液。理想情況下,傳感器應(yīng)產(chǎn)生0 V輸出。ADC讀數(shù) 將是系統(tǒng)失調(diào)電壓。典型pH探針傳感器的失調(diào)可能高達(dá)±30 mV。
實(shí)踐中常常使用另一種方法,即利用多種緩沖溶液來設(shè)置一些點(diǎn) 以構(gòu)建一般的線性或非線性方程。在此例程中,需要兩種經(jīng)NIST 認(rèn)證并可追溯的額外pH緩沖溶液。這兩種額外緩沖溶液的pH值 至少應(yīng)相差2。
通過緩沖溶液執(zhí)行校準(zhǔn)的方法如下:
● 第1步:從第一種緩沖溶液中移出電極組件并用去離子水或 蒸餾水清洗之后,將帶溫度傳感器的pH探針浸入所選的第 二種緩沖溶液中。
● 第2步:重復(fù)第2步,但使用第三種緩沖溶液。
● 第3步:根據(jù)利用所選緩沖溶液測得的值建立方程。
可利用多個(gè)數(shù)學(xué)方程導(dǎo)出校準(zhǔn)方程。常用公式之一是點(diǎn)斜式直線 方程。此方程使用校準(zhǔn)期間獲得的兩點(diǎn):P1 (Vm1, pH1)和P2 (Vm2, pH2),其中P1和P2是利用所選緩沖溶液測得的點(diǎn)。為了確定未知 溶液的pH值,對于給定點(diǎn)Px (Vmx, pHx),可以利用方程進(jìn)行簡單的 線性插值:
若有多組點(diǎn),為提高精度,可使用一階線性回歸。給定n個(gè)數(shù)據(jù) P0 (Vm0, pH0), P1 (Vm1, pH1), P2 (Vm2, pH2), P3 (Vm3, pH3), ... , Pn (Vmn, pHn), 可以利用最小二乘法建立一般方程, pHx = a + b × Vmx, 其中b為直線的斜率,a為截距,其值如下:
以及
最小二乘逼近法可擴(kuò)展到更高階,例如二階非線性方程。一般二 階方程可以表示為:pHx = a + b × Vmx + c × Vmx2。a、b和c的值可 計(jì)算如下:
這個(gè)方程組可通過代入、消元或矩陣方法來求解,從而獲得未知 變量a、b、c的值。
硬件設(shè)計(jì)解決方案
緩沖放大器
在此給定條件下,為使電路與該高源電阻隔離開來,需要一個(gè)高 輸入阻抗、超低輸入偏置電流的緩沖放大器。低噪聲運(yùn)算放大器 AD8603可用作該應(yīng)用的緩沖放大器。AD8603的低輸入電流可以 最大限度地減少流過電極電阻的偏置電流所產(chǎn)生的電壓誤差。 就25°C下串聯(lián)電阻為1 GΩ的pH探針來說,對于200 fA典型輸入偏 置電流,失調(diào)誤差為0.2 mV (0.0037 pH)。即使在1 pA的最大輸入偏 置電流下,誤差也只有1 mV。雖然不一定需要,但可以利用防護(hù)、 屏蔽、高絕緣電阻支柱以及其他此類標(biāo)準(zhǔn)皮安方法來最大限度 地減少所選緩沖器高阻抗輸入端的泄漏。
模數(shù)轉(zhuǎn)換器
低功耗ADC適合這種應(yīng)用。16位Σ-Δ型ADC AD7792支持精密測量應(yīng) 用。它有一個(gè)低噪聲3通道輸入,當(dāng)更新速率為4.17 Hz時(shí),噪聲僅 有40 nV rms。該器件采用2.7 V至5.25 V電源供電,典型功耗為400 μA,采用16引腳TSSOP封裝。其他特性包括4 ppm/°C溫漂(典型 值)的內(nèi)置帶隙基準(zhǔn)電壓源、最大1 μA的關(guān)斷功耗以及內(nèi)置時(shí)鐘 振動(dòng)器,因此所需器件數(shù)量和PCB空間得以減少。
選擇RF收發(fā)器
基于前述要求, ADuCRF101最適合這種應(yīng)用。
ADuCRF101是一款針對低功耗無線應(yīng)用而設(shè)計(jì)的完全集成式數(shù)據(jù) 采集解決方案,工作頻率范圍為431 MHz至464 MHz和862 MHz至 928 MHz。它集成了通信外設(shè),例如應(yīng)用所需的兩條SPI總線。片內(nèi) 提供128 kB非易失性Flash/EE存儲(chǔ)器和16 kB SRAM。它是集成微控 制器和收發(fā)器的單芯片解決方案,這使得器件數(shù)量和電路板尺 寸減至最小。
ADuCRF101直接采用2.2 V至3.3 V電壓范圍的電池供電,功耗如下:
● 280 nA(關(guān)斷模式,非保留狀態(tài))
● 1.9 μA(關(guān)斷模式,處理器存儲(chǔ)器和RF收發(fā)器存儲(chǔ)器保留)
● 210 μA/MHz(Cortex-M3處理器處于激活模式)
● 12.8 mA(RF收發(fā)器處于接收模式,Cortex-M3處理器處于關(guān) 斷模式)
● 9 mA至32 mA(RF收發(fā)器處于發(fā)射模式,Cortex-M3處理器處 于關(guān)斷模式)
軟件實(shí)現(xiàn)
軟件是無線傳輸系統(tǒng)的關(guān)鍵部分之一。它決定了系統(tǒng)如何工作, 對系統(tǒng)功耗也有影響。該系統(tǒng)有兩個(gè)軟件部分,分別是協(xié)議堆棧 和應(yīng)用程序堆棧。使用的協(xié)議堆棧為ADRadioNet—一種用于ISM 頻段的無線網(wǎng)絡(luò)協(xié)議。它采用IPv6地址,集合了此類解決方案需 要的大部分特性,例如低功耗、多跳、端對端應(yīng)答、自愈等。應(yīng)用 程序堆棧是一個(gè)通過SPI訪問pH參考設(shè)計(jì)板的軟件。
為了高效運(yùn)行這兩個(gè)軟件堆棧,使用了一個(gè)簡單的調(diào)度程序。一 個(gè)非搶占式調(diào)度程序處理協(xié)議堆棧任務(wù),為其功能分配一定的時(shí) 間和資源。然而,系統(tǒng)中定義的任務(wù)數(shù)量是有限的。為了高效工 作,非搶占式調(diào)度程序必須在其時(shí)間消逝之前完成已定義任務(wù)的 執(zhí)行。對于系統(tǒng)中的兩個(gè)堆棧,非搶占式調(diào)度程序正合適,因?yàn)?分配給它的已定義任務(wù)數(shù)量是有限的。
結(jié)語
本文介紹了pH無線傳感器監(jiān)控設(shè)計(jì)方面的不同挑戰(zhàn)和解決方 案。已經(jīng)證明,ADI數(shù)據(jù)采集產(chǎn)品可用來應(yīng)對pH測量的各種挑戰(zhàn)。 AD8603運(yùn)算放大器或任何具有高輸入阻抗的同等ADI放大器,可 用來抵消傳感器的高輸出阻抗,從而提供足夠的屏蔽,防止系統(tǒng) 加載。ADuCRF101數(shù)據(jù)采集系統(tǒng)IC可提供完整的RF數(shù)據(jù)傳輸解決 方案。數(shù)據(jù)采集的高精度既可利用精密放大器和ADC硬件實(shí)現(xiàn), 也可通過軟件校準(zhǔn)實(shí)現(xiàn),即利用數(shù)學(xué)統(tǒng)計(jì)建立一個(gè)一般方程,例 如各種曲線擬合法。
參考電路
1 Jenway應(yīng)用筆記,Jenway高性能pH電極評估。Jenway。 Jenway.
推薦閱讀:
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗(yàn)科技驅(qū)動(dòng)的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲(chǔ)能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級分流器以及匹配的評估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動(dòng)車
電動(dòng)工具
電動(dòng)汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖