無需電感器如何滿足EMI測試需求
發(fā)布時(shí)間:2017-06-01 來源:Tony Armstrong 責(zé)任編輯:wenwei
【導(dǎo)讀】針對開關(guān)電源的一條基本原理是其一定不能產(chǎn)生大量的噪聲。因此,安靜、經(jīng)過良好調(diào)節(jié)的電源對于在許多電路應(yīng)用中實(shí)現(xiàn)最佳性能是很重要的。為了獲得這種性能水平,至關(guān)緊要的是能夠減輕轉(zhuǎn)換過程中而產(chǎn)生的任何噪聲。實(shí)現(xiàn)此目標(biāo)的一種顯而易見的辦法就是使用線性穩(wěn)壓器。然而,盡管線性穩(wěn)壓器可提供安靜的電源軌,但是它們的轉(zhuǎn)換效率在高降壓比條件下欠佳,而這在高輸出電流應(yīng)用中會(huì)導(dǎo)致設(shè)計(jì)的熱問題。
當(dāng)然,基于磁性元件的開關(guān)穩(wěn)壓器能夠緩解常見的熱問題,這是因?yàn)樗鼈兺ǔ>哂懈叩霓D(zhuǎn)換效率,從而在最終應(yīng)用要求高輸出電流時(shí)可實(shí)現(xiàn)熱設(shè)計(jì)的簡化。眾所周知,組件選擇和電路板布局在決定幾乎所有電源之設(shè)計(jì)成敗方面會(huì)起到重要的作用。這些方面設(shè)定了它們的功能性 EMI 和熱運(yùn)行方式。對于新手來說,開關(guān)電源布局可能貌似一種“黑色”藝術(shù),但是事實(shí)上它是設(shè)計(jì)的一個(gè)基本,而這方面在設(shè)計(jì)過程的早期常常是被忽視的。由于功能性 EMI 要求始終是必須滿足的,因此對電源功能穩(wěn)定性有好處的東西對其 EMI 輻射指標(biāo)常常也是有益的。此外,從頭開始的良好布局不僅不會(huì)給設(shè)計(jì)增加任何成本,而且通過免除增加 EMI 濾波器、結(jié)構(gòu)屏蔽、EMI 測試時(shí)間和諸多電路板修改的需要,實(shí)際上還能節(jié)省成本。
而且,當(dāng)在設(shè)計(jì)中使用多個(gè) DC/DC 開關(guān)模式穩(wěn)壓器以產(chǎn)生多個(gè)電源軌,或通過穩(wěn)壓器的并聯(lián)來實(shí)現(xiàn)均流和提供較高輸出功率時(shí),由于噪聲所引起的潛在干擾問題還會(huì)加劇。如果所有均在一個(gè)相似的頻率工作 (開關(guān)操作),則由一個(gè)電路中的多個(gè)穩(wěn)壓器產(chǎn)生的組合能量將集中在一個(gè)頻率上。該能量的存在會(huì)成為一個(gè)問題,特別是如果印刷電路板 (PCB) 上其余的 IC、以及其他系統(tǒng)板彼此靠近且容易受到該輻射能量的不良影響。在安裝密度高和通常靠近電噪聲發(fā)生源 (例如:機(jī)械式開關(guān)感性負(fù)載、PWM 驅(qū)動(dòng)功率輸出、微處理器時(shí)鐘和接觸式開關(guān)) 的工業(yè)和汽車系統(tǒng)中,這會(huì)格外麻煩。此外,如果在不同的頻率執(zhí)行開關(guān)操作,則互調(diào)分量會(huì)混疊至敏感的頻段中。
開關(guān)穩(wěn)壓器輻射
在重視低散熱量和高效率的場合中,常常用開關(guān)穩(wěn)壓器取代線性穩(wěn)壓器。而且,開關(guān)穩(wěn)壓器通常是輸入電源總線線路上的第一個(gè)有源組件,因而對于整個(gè)產(chǎn)品設(shè)計(jì)的 EMI 性能具有重大的影響。
傳導(dǎo)輻射“騎”在連接至某個(gè)產(chǎn)品的導(dǎo)線和走線上。由于噪聲集中到設(shè)計(jì)中的某個(gè)特定端子或連接器,因此與傳導(dǎo)輻射要求的相符性通??衫昧己玫牟季只?yàn)V波器設(shè)計(jì)在開發(fā)過程的早期予以保證。輻射發(fā)射是完全不同的另外一件事情。電路板上每個(gè)傳輸電流的組件和線路都輻射一個(gè)電磁場。電路板上的每一根走線都是一個(gè)天線,而每個(gè)銅平面則是一個(gè)諧振器。任何電信號(hào) (純正弦波或 DC 電壓除外) 都將在整個(gè)信號(hào)頻譜上產(chǎn)生噪聲。即使采取了謹(jǐn)慎的設(shè)計(jì),電源設(shè)計(jì)師在對系統(tǒng)進(jìn)行測試之前都絕對不會(huì)真正知道輻射發(fā)射將糟糕到什么程度。而且,直到設(shè)計(jì)基本完成才能正式實(shí)施輻射發(fā)射測試。
濾波器常用于通過衰減某個(gè)特定頻率上或某個(gè)頻率范圍內(nèi)的信號(hào)強(qiáng)度來降低 EMI。穿越空間傳輸?shù)牟糠衷撃芰?(輻射能量) 通過增設(shè)金屬和磁屏蔽加以衰減。“騎”在 PCB 走線上的那部分能量 (傳導(dǎo)能量) 則通過增設(shè)鐵氧體磁珠和其他濾波器進(jìn)行抑制。EMI 雖然是不可消除,但是能夠被衰減至一個(gè)其他通信、信號(hào)處理和數(shù)字組件可以接受的水平。此外,有幾家管理機(jī)構(gòu)強(qiáng)制執(zhí)行標(biāo)準(zhǔn)以確保在工業(yè)和汽車系統(tǒng)中均實(shí)現(xiàn)相符性。
采用表面貼裝技術(shù)的新式輸入濾波器組件擁有優(yōu)于通孔式元件的性能。然而,這種改善的步伐落后于當(dāng)今高頻開關(guān)穩(wěn)壓器所產(chǎn)生之需求的增速。由于較快開關(guān)轉(zhuǎn)換的原因,在較高工作頻率上要求的低最小導(dǎo)通和關(guān)斷時(shí)間會(huì)產(chǎn)生較高的諧波分量,從而增加輻射噪聲。然而,這些高開關(guān)邊緣速率是獲得較高轉(zhuǎn)換效率所必需的。開關(guān)電容器充電泵并未呈現(xiàn)這種運(yùn)行方式,因?yàn)樗ぷ髟诘偷枚嗟拈_關(guān)頻率,而且最重要的是能夠容許較慢的開關(guān)轉(zhuǎn)換,并不會(huì)導(dǎo)致效率的下降。
精明懂行的 PCB 設(shè)計(jì)師將縮小熱回路,并采用與有源層盡可能靠近的屏蔽接地層。盡管如此,器件引出腳配置、封裝結(jié)構(gòu)、熱設(shè)計(jì)要求和在去耦組件中存儲(chǔ)充足能量所需的封裝尺寸還是決定了熱回路尺寸必須最小化。讓事情更復(fù)雜的是,在典型的平面型印刷電路板中,走線之間高于 30MHz 的磁性或變壓器型耦合將削弱濾波器所產(chǎn)生的各種作用,這是因?yàn)橹C波頻率越高,就會(huì)成為不良影響越強(qiáng)的有害磁耦合。
開關(guān)電容器充電泵
充電泵已經(jīng)存在了幾十年,它們提供 DC/DC 電壓轉(zhuǎn)換,使用一個(gè)開關(guān)網(wǎng)絡(luò)對兩個(gè)或更多的電容器進(jìn)行充電和放電?;镜某潆姳瞄_關(guān)網(wǎng)絡(luò)在電容器的充電和放電狀態(tài)之間切換。如圖 1 所示,“飛跨電容器”C1 負(fù)責(zé)往返運(yùn)送電荷,“儲(chǔ)能電容器”C2 用于保存電荷并對輸出電壓進(jìn)行濾波。附加的“飛跨電容器”和開關(guān)陣列可實(shí)現(xiàn)多種增益。
圖 1:電壓逆變器的簡化充電泵方框圖
當(dāng)開關(guān) S1 和 S3 導(dǎo)通 (即閉合),而開關(guān) S2 和 S4 切斷 (即開路) 時(shí),輸入電源為 C1 充電。在下一個(gè)周期中,S1 和 S3 斷開,S2 和 S4 導(dǎo)通,電荷轉(zhuǎn)移至 C2,從而產(chǎn)生 VOUT = – (V+)。
然而直到近期,充電泵一直存在著輸入和輸出電壓范圍有限的問題,因而限制了其在輸入常常高達(dá) 40V 或更高的工業(yè)和汽車應(yīng)用中的使用。
在該領(lǐng)域中新近推出的一款產(chǎn)品是凌力爾特的 LTC3256。它是高集成度、高電壓低噪聲雙輸出電源,采用單一正輸入電壓,無需電感器并以高效率提供 5V 和 3.3V 降壓電源。該器件在很寬的 5.5V 至 38V 輸入電壓范圍內(nèi)工作,包括可獨(dú)立地使能的雙輸出:5V 100mA 電源,以及 250mA 3.3V 低壓差 (LDO) 穩(wěn)壓器,總共提供 350mA 可用輸出電流。與雙 LDO 解決方案相比,這些穩(wěn)壓器結(jié)合使用后的功耗會(huì)低得多。例如,在 12V 輸入和兩個(gè)輸出均為最大負(fù)載情況下,LTC3256 的功耗降低超過 2W (相比于雙 LDO 方案),從而顯著減少了熱損耗和輸入電流。這款器件的完整原理圖請見圖 2。
圖 2:LTC3256 原理圖具有一個(gè) 5V/100mA 輸出和一個(gè) 3.3V/250mA 輸出
LTC3256 專為符合 ISO26262 診斷覆蓋要求的系統(tǒng)而設(shè)計(jì),納入了豐富的安全和系統(tǒng)監(jiān)視功能。該器件非常適合要求采用高電壓輸入提供低噪聲、低電源軌的各種應(yīng)用,例如:汽車 ECU / CAN 收發(fā)器電源、工業(yè) / 電信內(nèi)務(wù)處理電源、以及通用型低功率轉(zhuǎn)換。
LTC3256 通過以 2:1 模式運(yùn)行充電泵,在盡可能寬的工作范圍內(nèi)最大限度提高效率,并在需要時(shí)自動(dòng)切換到 1:1 模式,以與 VIN 和負(fù)載情況保持一致。受控輸入電流和軟切換最大限度降低了傳導(dǎo)和輻射 EMI。該器件在兩個(gè)輸出均處于調(diào)節(jié)狀態(tài) (無負(fù)載) 時(shí),靜態(tài)電流僅為很低的 20μA,在停機(jī)模式中則為 1μA。集成的看門狗定時(shí)器、獨(dú)立的電源良好輸出以及復(fù)位輸入確保了可靠的系統(tǒng)運(yùn)行并實(shí)現(xiàn)故障監(jiān)視。1.1V 緩沖基準(zhǔn)輸出允許針對安全運(yùn)行至關(guān)重要的應(yīng)用進(jìn)行系統(tǒng)自測試診斷。LTC3256 還提供額外的安全功能,包括過流故障保護(hù)、過熱保護(hù)和 38V 輸入瞬態(tài)容限。
下面圖 3 中的曲線圖突出顯示了 LTC3256 的優(yōu)良功耗特性。在 12VIN 時(shí),具有 3.3V/250mA 和 5V/100mA 輸出的 LTC3256 消耗約 750mW 功率,而雙 LDO 方案在相同條件下的功耗則幾乎達(dá)到 3W。也就是說 LTC3256 的功耗少了 2.25W,對于設(shè)計(jì)的熱方面而言這是一個(gè)巨大的好處。
圖 3:LTC3256 與雙 LDO 的功耗特性比較
結(jié)論
眾所周知,在初始設(shè)計(jì)過程中需要謹(jǐn)慎地關(guān)注 EMI 考慮因素,以確保它們將在系統(tǒng)設(shè)計(jì)完成之時(shí)順利通過 EMI 測試。迄今為止,除了非常低功率系統(tǒng)之外,還沒有萬無一失方法來保證利用正確的電源 IC 選擇就能輕松地如愿以償。不過,隨著最近 LTC3256 高電壓充電泵等低 EMI 穩(wěn)壓器的推出,現(xiàn)在有了一種可用的替代選擇。它可提供高得多的效率和較低的功耗 (當(dāng)與線性穩(wěn)壓器相比),而且不必應(yīng)對采用開關(guān)穩(wěn)壓器時(shí)存在的補(bǔ)償、布局、磁學(xué)和 EMI 問題。
推薦閱讀:
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計(jì)
- ADI電機(jī)運(yùn)動(dòng)控制解決方案 驅(qū)動(dòng)智能運(yùn)動(dòng)新時(shí)代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 功率器件熱設(shè)計(jì)基礎(chǔ)(九)——功率半導(dǎo)體模塊的熱擴(kuò)散
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
- 一文看懂電壓轉(zhuǎn)換的級(jí)聯(lián)和混合概念
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動(dòng)車
電動(dòng)工具
電動(dòng)汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖