【導(dǎo)讀】非分散紅外(NDIR)光譜儀常被用來檢測(cè)氣體和測(cè)量碳氧化物(例如一氧化碳和二氧化碳)的濃度。一個(gè)紅外光束穿過采樣腔,樣本中的各氣體組分吸收特定頻率的紅外線。通過測(cè)量相應(yīng)頻率的紅外線吸收量,便可確定該氣體組分的濃度。之所以說這種技術(shù)是非分散的,是因?yàn)榇┻^采樣腔的波長(zhǎng)未經(jīng)預(yù)先濾波;相反地,光濾波器位于檢波器之前,以便濾除選定氣體分子能夠吸收的波長(zhǎng)之外的所有光線。
圖1所示電路是一個(gè)基于NDIR原理的熱電堆氣體傳感器完整電路。該電路針對(duì)二氧化碳檢測(cè)優(yōu)化,但采用不同濾光器的熱電堆之后亦可精確測(cè)量多種氣體的濃度。
印刷電路板(PCB)采用Arduino擴(kuò)展板尺寸設(shè)計(jì),并與Arduino兼容平臺(tái)板EVAL-ADICUP360對(duì)接。信號(hào)調(diào)理由低噪聲放大器AD8629 和 ADA4528-1以及精密模擬微控制器ADuCM360實(shí)現(xiàn),該微控制器集 成可編程增益放大器、雙通道24位Σ-Δ型模數(shù)轉(zhuǎn)換器(ADC)和ARM®Cortex®-M3處理器。
熱電堆傳感器由通常串聯(lián)(或偶爾并聯(lián))的大量熱電偶組成。串聯(lián)熱電偶的輸出電壓取決于熱電偶結(jié)與基準(zhǔn)結(jié)之間的溫度差。該原理稱為塞貝克效應(yīng),以其發(fā)現(xiàn)者Thomas Johann Seebeck命名。
本電路使用運(yùn)算放大器AD8629放大熱電堆傳感器輸出信號(hào)。熱電堆輸出電壓相對(duì)較?。◤膸装傥⒎綆缀练?,需要高增益和極低的失調(diào)與漂移,以避免直流誤差。熱電堆的高內(nèi)阻特性(典型值為84 kΩ)需要低輸入偏置電流的放大器以最大程度地減少誤差,而AD8629的偏置電流僅為30 pA(典型值)。該器件隨時(shí)間和溫度變化的漂移極低,在校準(zhǔn)溫度測(cè)量后不會(huì)引入額外誤差。與ADC采樣速率同步的脈沖光源最大程度地減少低頻漂移和閃爍噪聲引起的誤差。
AD8629在1 kHz下的電壓噪聲頻譜密度僅為22 nV/√Hz,低于熱電堆37 nV/√Hz的電壓噪聲密度。
AD8629在10 Hz下的電流噪聲頻譜密度也非常低,典型值僅為5 fA/√Hz。該電流噪聲流過84 kΩ熱電堆,10 Hz時(shí)的噪聲貢獻(xiàn)僅為420 pV/√Hz。
圖1. NDIR氣體檢測(cè)電路(原理示意圖:未顯示所有連接和去耦)
采用低噪聲放大器ADA4528-1作為緩沖的傳感器共模電壓為200mV,因此NTC和熱電堆信號(hào)輸出滿足ADuCM360緩沖模式輸入的要求:ADuCM360 ADC緩沖模式輸入為AGND + 0.1 V至約AVDD - 0.1 V。CN-0338 Arduino擴(kuò)展板兼容其它類型的僅有單端輸入ADC的Arduino兼容平臺(tái)。
該電路的斬波頻率范圍為0.1 Hz至5 Hz,可通過軟件選擇。低壓差穩(wěn)壓器 ADP7105 l生成穩(wěn)定的5 V輸出電壓以驅(qū)動(dòng)紅外光源,并由ADuCM360控制開關(guān)。ADP7105具有軟啟動(dòng)功能,可消除冷啟動(dòng)光源時(shí)產(chǎn)生的浪涌電流。
ADuCM360集成雙通道、24位、Σ-Δ型ADC,在3.5 Hz至3.906 kHz的可編程速率范圍內(nèi)可同步采樣雙熱電堆單元。NDIR系統(tǒng)的數(shù)據(jù)采樣速率范圍限制在3.5 Hz至483 Hz之間,以便具有最佳的噪聲性能。
熱電堆檢測(cè)器工作原理
為了理解熱電堆,有必要回顧熱電偶的基本理論。
如果在絕對(duì)零度以上的任意溫度下連接兩種不同的金屬,則兩種金屬之間會(huì)產(chǎn)生電位差(熱電EMF或接觸電位),此電位差是結(jié)溫的函數(shù)(參見圖2中的熱電EMF電路)。
如果兩根導(dǎo)線在兩處相連,則形成兩個(gè)結(jié)點(diǎn)(參見圖2中連接負(fù)載的熱電偶)。如果兩個(gè)結(jié)點(diǎn)的溫度不同,則電路中產(chǎn)生凈EMF,并有電流流過,電流由EMF和電路總電阻決定(參見圖2)。如果其中一根導(dǎo)線斷開,則斷點(diǎn)處電壓等于電路的凈熱電EMF;并且如果該電壓可以測(cè)得,便可利用其計(jì)算兩個(gè)結(jié)點(diǎn)之間的溫度差(參見圖2中的熱電偶電壓測(cè)量)。記住,熱電偶測(cè)量?jī)蓚€(gè)結(jié)點(diǎn)之間的溫度差,而非一個(gè)結(jié)點(diǎn)處的絕對(duì)溫度。只有當(dāng)另一個(gè)結(jié)點(diǎn)(通常稱為基準(zhǔn)結(jié)點(diǎn)或冷結(jié))已知的情況下,測(cè)量結(jié)點(diǎn)處的溫度才可測(cè)得。
但是,要測(cè)量熱電偶產(chǎn)生的電壓卻很困難。假設(shè)電壓表連接第一個(gè)熱電偶測(cè)量電路(參見圖2中顯示冷結(jié)的實(shí)際熱電偶電壓測(cè)量)。連接電壓表的導(dǎo)線在連接處形成了更多的熱電偶。如果這些額外的結(jié)點(diǎn)溫度相同(無論溫度是多少),則中間金屬法則表明它們對(duì)系統(tǒng)的總EMF沒有凈貢獻(xiàn)。如果它們的溫度不同,則產(chǎn)生誤差。由于每一對(duì)不同的接觸金屬都會(huì)產(chǎn)生熱電EMF——包括銅片/焊點(diǎn)、可伐/銅片(可伐是一種用于IC引線框架的合金)和鋁/可伐(IC內(nèi)的焊接)——在實(shí)際電路中,問題更為復(fù)雜,有必要極其謹(jǐn)慎地確保熱電偶周邊電路的所有結(jié)點(diǎn)對(duì)(除測(cè)量結(jié)點(diǎn)和基準(zhǔn)結(jié)點(diǎn)本身)的溫度相同。
圖2. 熱電偶原理
熱電堆由大量熱電偶串聯(lián)而成,如圖3所示。與單個(gè)熱電偶相比,熱電堆產(chǎn)生的熱電電壓要高得多。
圖3. 多個(gè)熱電偶組成熱電堆
在NDIR應(yīng)用中,經(jīng)過濾波的脈沖紅外光施加于串聯(lián)有源結(jié)點(diǎn);因此,結(jié)點(diǎn)加熱,產(chǎn)生較小的熱電電壓?;鶞?zhǔn)結(jié)點(diǎn)的溫度由熱敏電阻測(cè)量。
很多氣體的正負(fù)電荷中心瞬態(tài)或穩(wěn)態(tài)不重合。在紅外頻譜,氣體可吸收特定頻率,這種特性可以用來進(jìn)行氣體分析。當(dāng)紅外輻射射入氣體中,并且當(dāng)分子的自諧振頻率與紅外波長(zhǎng)相匹配時(shí),氣體分子會(huì)根據(jù)原子的能級(jí)躍遷而與入射紅外線產(chǎn)生諧振。
對(duì)于大部分紅外氣體檢測(cè)應(yīng)用而言,目標(biāo)氣體的成分是已知的,因此不需要?dú)庀嗌V分析。然而,如果不同氣體的吸收線重疊,那么系統(tǒng)就必須處理這些氣體之間的相互干擾。
二氧化碳在4200 nm和4320 nm之間存在吸收峰值,如圖4所示。
圖4. 二氧化碳(CO2)的吸收頻譜
紅外光源的輸出波長(zhǎng)范圍和水的吸收頻譜同樣決定了檢測(cè)波長(zhǎng)的選擇。在3000 nm以下,以及4500 nm和8000 nm之間,水具有較強(qiáng)的吸收性。如果目標(biāo)氣體中有濕氣(濕度高),則在這些范圍內(nèi),檢測(cè)氣體會(huì)受到較強(qiáng)的干擾影響。圖5顯示了二氧化碳吸收頻譜與水的吸收頻譜重疊。(所有吸收數(shù)據(jù)均來自HITRAN數(shù)據(jù)庫(kù))。
圖5. 二氧化碳與水的吸收頻譜重疊
如果將紅外光施加在雙熱電堆傳感器上,并安裝一對(duì)濾光器,使其中一個(gè)濾光器中心波長(zhǎng)在4260 nm,而另一個(gè)中心波長(zhǎng)在3910 nm,則通過測(cè)量?jī)蓚€(gè)熱電堆的電壓之比即可測(cè)得二氧化碳濃度。中心波長(zhǎng)與二氧化碳吸收波長(zhǎng)重疊的濾光器用作測(cè)量通道,中心波長(zhǎng)在二氧化碳吸收波長(zhǎng)以外的濾光器用作基準(zhǔn)通道。使用基準(zhǔn)通道后,可消除灰塵或輻射強(qiáng)度衰減引起的測(cè)量誤差。二氧化碳和水蒸汽對(duì)3910nm的紅外線幾乎都沒有吸收,注意這一點(diǎn)很重要;這使得該區(qū)域成為基準(zhǔn)通道的理想地點(diǎn)。
NDIR檢測(cè)中使用的熱電堆具有相對(duì)較高的內(nèi)阻,而50 Hz/60 Hz電源線噪聲會(huì)耦合進(jìn)入信號(hào)路徑。熱電堆的內(nèi)阻可能為100 kΩ左右,導(dǎo)致熱噪聲成為系統(tǒng)內(nèi)的主要噪聲。例如,圖1系統(tǒng)中選用的熱電堆傳感器電壓噪聲密度為37 nV/√Hz。為了使系統(tǒng)擁有最好的性能,應(yīng)該使傳感器輸出盡可能大的信號(hào),并且在電路中使用較低的增益。
使來自熱電堆傳感器的信號(hào)最大化的最佳方法是使用具有高反射特性的腔室,這樣做可以確保盡可能多的輻射進(jìn)入檢測(cè)器而不被腔室吸收。使用反射腔室來減少腔室吸收輻射量還可降低系統(tǒng)功耗,因?yàn)檫@樣可以使用小功率的輻射源。
NDIR氣體吸收的比爾-朗伯定律
測(cè)量通道傳感器的紅外強(qiáng)度以指數(shù)關(guān)系遞減,此關(guān)系稱為比爾-朗伯定律:
其中:
1.I表示出射光強(qiáng)。
2.I0表示入射光強(qiáng)。
3.k表示特定氣體和濾光器組合的吸收系數(shù)。
4.l表示光源與檢測(cè)器之間的等效光學(xué)路徑長(zhǎng)度。
5.x表示氣體濃度。
對(duì)于測(cè)量通道傳感器輸出,存在相應(yīng)的輸出電壓變化V0 – V:
其中:
1.FA表示相對(duì)吸收率。
2.V0表示入射光強(qiáng)對(duì)應(yīng)傳感器輸出。
3.V表示出射光強(qiáng)對(duì)應(yīng)傳感器輸出。
整理公式,并結(jié)合前面兩個(gè)公式,可得:
如果k和l保持不變,F(xiàn)A可相對(duì)于x進(jìn)行繪圖,如圖6所示(其中,kl = 115、50、25、10和4.5)。FA值隨c增加,但最終在高氣體濃度下飽和。
圖6. 典型相對(duì)吸收率(kl = 4.5、10、25、50、115)
這一關(guān)系表明,對(duì)于任意固定的設(shè)置,低濃度時(shí)氣體對(duì)相對(duì)吸收率的影響要高于高濃度;但是,可以調(diào)節(jié)k和l,以便針對(duì)所需的氣體濃度范圍提供最佳吸收。這意味著較長(zhǎng)的光學(xué)路徑更適合于低氣體濃度,而較短的光學(xué)路徑更適合于高氣體濃度。
下文描述了兩點(diǎn)校準(zhǔn)步驟,這在使用理想比爾-朗伯公式確定kl常數(shù)的情況下是必需的。如果b = kl,則
校準(zhǔn)的第一步要求對(duì)傳感器組件施加低濃度的二氧化碳?xì)怏w(或純氮?dú)?,?%濃度的二氧化碳?xì)怏w)。
1.ACTLOW表示低濃度氣體環(huán)境中測(cè)量通道傳感器的峰峰值輸出。
2.REFLOW表示低濃度氣體環(huán)境中基準(zhǔn)通道傳感器的峰峰值輸出。
3.TLOW表示低濃度氣體的溫度。
校準(zhǔn)的第二步要求將已知濃度(xCAL)的二氧化碳?xì)怏w施加到組件上。通常,xCAL濃度水平選擇濃度范圍內(nèi)的最大值(比如針對(duì)工業(yè)空氣質(zhì) 量范圍,選擇0.5%體積濃度)。
1.ACTCAL表示校準(zhǔn)氣體濃度為xCAL時(shí),測(cè)量通道傳感器的峰峰值輸出。
2.REFCAL表示校準(zhǔn)氣體濃度為xCAL時(shí),基準(zhǔn)通道傳感器的峰峰值輸出。
這樣就可以寫出以下含有兩個(gè)未知數(shù)(I0和b)的聯(lián)立方程:
求解兩個(gè)方程的I0 和 b,
然后,對(duì)于未知濃度(x)的氣體,其中:
ACT表示未知?dú)怏w環(huán)境中測(cè)量通道傳感器的峰峰值輸出。
REF表示未知?dú)怏w環(huán)境中基準(zhǔn)通道傳感器的峰峰值輸出。
T表示未知?dú)怏w的溫度,單位為K。
系數(shù)T/TLOW補(bǔ)償溫度變化對(duì)氣體濃度的影響(在此使用了理想氣體定律)。
修正比爾-朗伯定律
出于實(shí)際考慮,在使用NDIR時(shí),需要修改比爾-朗伯定律以得到精確的讀數(shù),如下所示:
因?yàn)椴⒎撬羞_(dá)到熱電堆的紅外輻射都經(jīng)歷過理想的氣體吸收(哪怕氣體濃度較高),因而引入SPAN系數(shù)。由于濾光器帶寬和吸收頻譜的精細(xì)結(jié)構(gòu),SPAN小于1。
光學(xué)路徑長(zhǎng)度的變化和光的散射要求增加指數(shù)項(xiàng)c,以便使方程精確吻合實(shí)際吸收數(shù)據(jù)。
b和SPAN常數(shù)值同樣取決于測(cè)量的濃度范圍。典型濃度范圍如下所示:
1.工業(yè)氣體質(zhì)量(IAQ):0至0.5% vol. (5000 ppm)。注意,環(huán)境空氣中的二氧化碳濃度約為0.04% vol.,或400 ppm。
2.安全防護(hù):0至5% vol.。
3.燃燒:0至20% vol.。
4.過程控制:0至100% vol.。
特定系統(tǒng)的b和c實(shí)際值通常使用曲線擬合程序從FA與濃度x的關(guān)系曲線上的一個(gè)數(shù)據(jù)點(diǎn)求得。
對(duì)于b和c常數(shù)已確定的給定系統(tǒng),ZERO和SPAN的數(shù)值可以使用兩點(diǎn)校準(zhǔn)法計(jì)算得到。
此過程的第一步是注入低濃度xLOW氣體,并記錄以下內(nèi)容:
1.ACTLOW: 低濃度氣體環(huán)境中測(cè)量通道傳感器的峰峰值輸出。
2.REFLOW: 低濃度氣體環(huán)境中基準(zhǔn)通道傳感器的峰峰值輸出。
3.TLOW: 低濃度氣體的溫度,單位為K。
校準(zhǔn)的第二步要求將已知濃度(xCAL)的二氧化碳?xì)怏w施加到組件上。通常,xCAL濃度水平選擇濃度范圍內(nèi)的最大值(比如針對(duì)工業(yè)空氣質(zhì)量范圍,選擇0.5%體積濃度)。記錄以下內(nèi)容:
1.ACTCAL: 校準(zhǔn)氣體濃度為xCAL時(shí),測(cè)量通道傳感器的峰峰值輸出。
2.REFCAL: 校準(zhǔn)氣體濃度為xCAL時(shí),基準(zhǔn)通道傳感器的峰峰值輸出。
這樣就可以寫出以下含有兩個(gè)未知數(shù)(I0和SPAN)的聯(lián)立方程:
求解兩個(gè)方程中的ZERO和SPAN:
然后,對(duì)于未知濃度(x)的氣體,其中:
ACT表示未知?dú)怏w環(huán)境中測(cè)量通道傳感器的峰峰值輸出。
REF表示未知?dú)怏w環(huán)境中基準(zhǔn)通道傳感器的峰峰值輸出。
T表示未知?dú)怏w的溫度,單位為K。
此方程假定 TLOW = TCAL.
環(huán)境溫度的影響
熱電堆傳感器通過吸收輻射來檢測(cè)溫度,但也會(huì)對(duì)環(huán)境溫度變化作出響應(yīng),導(dǎo)致雜散和干擾信號(hào)增加。由于這個(gè)原因,很多熱電堆傳感器都在封裝內(nèi)集成了熱敏電阻。
輻射吸收與腔室中的目標(biāo)分子數(shù)量有關(guān),而非目標(biāo)氣體的絕對(duì)百分比。因此,吸收采用標(biāo)準(zhǔn)大氣壓力下的理想氣體定律表述。
有必要同時(shí)記錄校準(zhǔn)狀態(tài)和測(cè)量狀態(tài)下的溫度數(shù)據(jù):
其中:
x 表示無溫度補(bǔ)償時(shí)的氣體濃度。
TLOW 表示校準(zhǔn)時(shí)的氣體溫度,單位為K。
T 表示采樣時(shí)的溫度,單位為K。
xT 表示溫度為T時(shí)的氣體濃度。
理想氣體定律下除了濃度會(huì)隨溫度而變之外,SPAN和FA也會(huì)隨溫度而產(chǎn)生輕微變化,在進(jìn)行精度極高的濃度測(cè)量時(shí)可能需要校正。
本文不涉及SPAN和FA溫度校正,但可以從SGX Sensor tech的應(yīng)用筆記1、應(yīng)用筆記2、應(yīng)用筆記3、應(yīng)用筆記4和應(yīng)用筆記5,以及Alphasense Limi ted的應(yīng)用筆記A AN-201、A AN-202、A AN-203、AAN-204和AAN-205中獲取詳情。
熱電堆驅(qū)動(dòng)器
HTS-E21-F3.91/F4.26熱電堆(Heimann Sensor, GmbH)的每一個(gè)通道都有84 kΩ內(nèi)阻。單通道等效驅(qū)動(dòng)電路如圖7所示。內(nèi)部84 kΩ熱電堆內(nèi)阻和外部8.2 nF電容組成RC低通噪聲濾波器,-3 dB截止頻率為:
改變不同熱電堆的C11和C15也就改變了噪聲性能和響應(yīng)時(shí)間。
圖7. 熱電堆驅(qū)動(dòng)器等效電路,G = 214.6
84 kΩ/8.2 nF濾波器的階躍函數(shù) 22位建立時(shí)間約為:
AD8629同相放大器增益設(shè)置為214.6,-3 dB截止頻率為:
22位建立時(shí)間約為:
NDIR最大斬波頻率為5 Hz,因此半周期脈沖寬度最小值為100 ms。22位建立時(shí)間約為0.1倍最小斬波脈沖寬度。
AD8629的0.1 Hz至10 Hz輸入電壓噪聲為0.5 μV p-p。忽略傳感器電壓噪聲和AD8629電流噪聲,則熱電堆的1 mV p-p信號(hào)輸出具有如下信噪比(SNR):
其中一個(gè)熱電堆以偽差分輸入方式連接ADuCM360 ADC1/ADC3輸入引腳,另一個(gè)個(gè)連接ADC2/ADC3輸入引腳。ADC3輸入引腳連接200 mV共模電壓,由低噪聲放大器ADA4528-1驅(qū)動(dòng)。ADA4528-1的0.1 Hz至10 Hz輸入電壓噪聲為99 nV p-p。若要使ADC輸入引腳保持在0.1 V以上,則需使用200 mV共模電壓。
AD8629級(jí)的增益為214.6,ADuCM360內(nèi)部PGA增益通過軟件自動(dòng)設(shè)定,范圍為1至128,確保輸入信號(hào)匹配ADC輸入的滿量程范圍(即±1.2 V)。來自熱電堆的峰峰值信號(hào)范圍為幾百微伏至幾毫伏。例如,假設(shè)滿量程熱電堆信號(hào)為1 mV p-p,則PGA增益4可產(chǎn)生860 mV p-p的ADC輸入信號(hào)。
不同靈敏度的熱電堆可能會(huì)要求AD8629級(jí)具有不同增益。如需將CN-0338 Arduino擴(kuò)展板與其它ADC內(nèi)部沒有集成PGA的Arduino平臺(tái)連接,則可能需要更高的增益。
改變AD8629增益的最簡(jiǎn)單方法是改變R6和R10;這樣不會(huì)影響由R5/R8和C9/C10決定的主極點(diǎn)頻率。
軟件可以選擇熱電堆輸出數(shù)據(jù)處理算法。用戶可以在峰峰值算法和均值算法之間作出選擇。
更多有關(guān)信號(hào)采集、光源脈沖定時(shí)以及溫度補(bǔ)償處理算法的詳細(xì)信息,請(qǐng)參閱CN-0338設(shè)計(jì)支持包和CN-0338用戶指南中的CN-0338 源代碼。.
NTC熱敏電阻驅(qū)動(dòng)器
熱電堆中的集成式NTC溫度傳感器特性如下:
RTH = 100 kΩ
β = 3940
熱敏電阻驅(qū)動(dòng)器的戴維寧等效電路參見圖8。R3和R4分壓器電阻提供670.3 mV電壓源,并與103.6 kΩ電阻串聯(lián)。驅(qū)動(dòng)電壓為670.3 mV -200 mV = 470.3 mV。
圖8. NTC熱敏電阻驅(qū)動(dòng)器等效電路
當(dāng)RTH = 100 kΩ時(shí)(25°C),熱敏電阻上的電壓為231 mV,因此測(cè)量時(shí),將PGA增益設(shè)為4。
ADuCM360中的靈活輸入多路復(fù)用器和雙通道ADC支持熱電堆信號(hào)和溫度傳感器信號(hào)的同時(shí)采樣,以補(bǔ)償漂移。
紅外光源驅(qū)動(dòng)器
選用International Light Technologies MR3-1089作為紅外光源,它具有拋光鋁反射器,150 mA時(shí)所需驅(qū)動(dòng)電壓為5.0 V,以便使紅外輻射最大化,并獲得最佳系統(tǒng)性能。來自燈的熱量使光反射器的溫度保持在環(huán)境溫度以上,有助于防止潮濕環(huán)境中出現(xiàn)冷凝。
溫度較低(關(guān)燈)時(shí),燈絲具有較低的電阻,這使其在開燈瞬間產(chǎn)生電流浪涌。帶有軟啟動(dòng)功能的穩(wěn)壓器對(duì)于解決這個(gè)問題很有用。
低壓差穩(wěn)壓器ADP7105具有可編程使能引腳,將它連接到DuCM360 的通用輸入/輸出引腳,可以對(duì)光源進(jìn)行開關(guān)控制。10 nF軟啟動(dòng)電容C6具有12.2 ms的軟啟動(dòng)時(shí)間,這約等于100 ms最小斬波階躍時(shí)間的0.125倍。
燈的導(dǎo)通電流(~150 mA)較大,因此須仔細(xì)進(jìn)行電路設(shè)計(jì)與布局,防止燈的開關(guān)脈沖耦合至微小的熱電堆輸出信號(hào)。
仔細(xì)確保燈的返回路徑不會(huì)流經(jīng)敏感的熱電堆傳感器接地返回路徑。燈的電流回路不可以與處理器的電流回路重疊,否則可能會(huì)產(chǎn)生電壓失調(diào)誤差。強(qiáng)烈建議針對(duì)燈的驅(qū)動(dòng)以及系統(tǒng)的信號(hào)調(diào)理部分采用單獨(dú)的穩(wěn)壓器。
ADP7105光源驅(qū)動(dòng)器直接采用連接EVAL-ADICUP360板的外部電源供電。
軟件考慮因素
同步斬波和采樣
如需測(cè)量氣體濃度,就必須對(duì)基準(zhǔn)和測(cè)量通道中的峰峰值信號(hào)值進(jìn)行采樣。ADuCM360集成兩個(gè)24位、Σ-Δ型ADC,這些ADC在連續(xù)采樣模式下工作。ADC由可編程增益放大器驅(qū)動(dòng),增益選項(xiàng)為1、2、4、8、16、32、64和128。
默認(rèn)斬波頻率設(shè)為0.25 Hz,默認(rèn)采樣速率設(shè)為10 Hz。但是,可以在軟件中設(shè)置斬波頻率,設(shè)置范圍為0.1 Hz至5 Hz;還可以設(shè)置ADC采樣速率,設(shè)置范圍為3.5 Hz至483 Hz。軟件保證采樣速率至少是斬波頻率的30倍。
對(duì)于0.25 Hz的默認(rèn)斬波頻率而言,熱電堆數(shù)據(jù)在2秒半周期內(nèi)的后1.5秒內(nèi)以10 Hz采樣率獲得,保證信號(hào)完全建立。忽略前500 ms的數(shù)據(jù)(消隱時(shí)間)。消隱時(shí)間也可以在軟件中設(shè)置,上升沿和下降沿可分別設(shè)置。注意,NTC熱敏電阻數(shù)據(jù)在消隱期間獲得。
校準(zhǔn)程序:理想比爾-朗伯方程
由于燈和熱電堆的特性不同,初次使用以及改變熱電堆或燈時(shí)必須校準(zhǔn)電路。
建議將整個(gè)組件放置在密封腔室中,并可向其中注入已知濃度的二氧化碳?xì)怏w,直到腔室中一切原有氣體均被排出。穩(wěn)定數(shù)分鐘后,便可開始進(jìn)行測(cè)量。
理想比爾-朗伯方程的校準(zhǔn)方式和算法如以下步驟所示:
1. 輸入下列命令:sbllcalibrate(標(biāo)準(zhǔn)比爾-朗伯校準(zhǔn))。
2. 注入低濃度(xLOW)或零濃度氣體(氮?dú)猓⒆屒皇覂?nèi)的氣體穩(wěn)定。
3.在終端輸入二氧化碳濃度。
4. 系統(tǒng)測(cè)量ACTLOW,它表示低濃度氣體中測(cè)量通道傳感器的峰峰值輸出。
5. 系統(tǒng)測(cè)量REFLOW,它表示低濃度氣體中基準(zhǔn)通道傳感器的峰峰值輸出。
6. 系統(tǒng)測(cè)量低濃度氣體的溫度TLOW.
7. 向腔室中注入濃度為xCAL的高濃度二氧化碳。
8. 在終端輸入二氧化碳濃度。
9. 系統(tǒng)測(cè)量ACTCAL、REFCAL和校準(zhǔn)溫度TCAL。
10. 系統(tǒng)計(jì)算ZERO和b值:
如需利用理想比爾-朗伯方程測(cè)量未知濃度的二氧化碳?xì)怏w,則請(qǐng)按下述步驟操作:
1. 向腔室注入未知濃度氣體并使其穩(wěn)定。
2. 測(cè)量ACT,它表示測(cè)量通道傳感器的峰峰值輸出。
3. 測(cè)量REF,它表示基準(zhǔn)通道傳感器的峰峰值輸出。
4. 測(cè)量溫度T,單位K。
5. 使用校準(zhǔn)后的ZERO值。
6. 使用校準(zhǔn)后的b值。
7. 計(jì)算相對(duì)吸收率:
計(jì)算濃度,應(yīng)用理想氣體定律下的溫度補(bǔ)償:
此步假定 TLOW = TCAL.
注意,CN-0338軟件會(huì)自動(dòng)執(zhí)行第2到第7步。
校準(zhǔn)程序:修正比爾-朗伯方程
如果通過測(cè)量得到了常數(shù)b和c的值,則使用下列步驟。
1. 輸入下列命令:mbllcalibrate(修正后的比爾-朗伯校準(zhǔn))。
2. 輸入b和c常數(shù)。
3. 注入低濃度(xLOW)二氧化碳?xì)怏w(氮?dú)猓?,并讓腔室?nèi)的氣體穩(wěn)定。
4. 在終端輸入二氧化碳濃度。
5. 系統(tǒng)測(cè)量ACTLOW,它表示低濃度氣體中測(cè)量通道傳感器的峰峰值輸出。
6. 系統(tǒng)測(cè)量REFLOW,它表示低濃度氣體中基準(zhǔn)通道傳感器的峰峰值輸出。
7. 系統(tǒng)測(cè)量溫度TLOW.
8. 向腔室中注入濃度為xCAL的高濃度二氧化碳。
9. 在終端輸入二氧化碳濃度。
10. 系統(tǒng)測(cè)量ACTCAL、REFCAL和校準(zhǔn)溫度TCAL。
11. 系統(tǒng)計(jì)算ZERO和SPAN:
如需利用修正后的比爾-朗伯方程測(cè)量未知濃度的二氧化碳?xì)怏w,則請(qǐng)按下述步驟操作:
1. 向腔室注入未知濃度氣體并使其穩(wěn)定。
2. 測(cè)量ACT,它表示測(cè)量通道傳感器的峰峰值輸出。
3. 測(cè)量REF,它表示基準(zhǔn)通道傳感器的峰峰值輸出。
4. 測(cè)量溫度T,單位K。
5. 使用校準(zhǔn)后的ZERO和SPAN值。
6. 使用之前確定的b和c值。
7. 計(jì)算相對(duì)吸收率:
計(jì)算濃度,應(yīng)用理想氣體定律下的溫度補(bǔ)償:
此步假定TLOW = TCAL.
NTC熱敏電阻算法與計(jì)算
NTC熱敏電阻等效電路如圖9所示。
圖9. NTC熱敏電阻電路
熱敏電阻上的電壓為:
其中:
1.VCC 為 3.3 V.
2.RNTC 為熱敏電阻值。
NTC熱敏電阻值可以表示為:
其中:
1.RTH 表示溫度為T0時(shí)的熱敏電阻值。
2.β 是NTC熱敏電阻數(shù)據(jù)手冊(cè)中的參數(shù)。
3.RNTC 表示溫度T時(shí)的熱敏電阻值。
合并以上兩個(gè)方程可得:
在每個(gè)燈的斬波時(shí)間間隔內(nèi),ADC切換至NTC采樣,如圖10所示。
圖10. NTC和熱電堆采樣時(shí)序以及燈的斬波
用戶交互界面
EVAL-ADICUP360平臺(tái)板通過USB端口連接PC。該板顯示為一個(gè)虛擬COM設(shè)備。任意類型的串口終端均可與EVAL-ADICUP360板交互,用于開發(fā)和調(diào)試。關(guān)于軟件操作的詳細(xì)信息,請(qǐng)參閱電路筆記CN-0338。
圖11顯示了典型EVAL-CN0338-ARDZ板的相對(duì)吸收率(FA)與二氧化碳濃度的函數(shù)關(guān)系。
圖11. 典型EVAL-CN0338-ARDZ板的相對(duì)吸收率與二氧化碳濃度的關(guān)系
EVAL-CN0338-ARDZ板的完整設(shè)計(jì)支持包包括布局文件、物料清單、原理圖和源代碼,請(qǐng)參閱www.analog.com/CN0338-DesignSupport.
測(cè)試設(shè)置的功能框圖如圖12所示,EVAL-CN0338-ARDZ Arduino擴(kuò)展板和EVAL-ADICUP360 Arduino兼容平臺(tái)板的照片如圖13所示。
圖12. 測(cè)試設(shè)置功能框圖
圖13. EVAL-CN0338-ARDZ板和EVAL-ADICUP360板照片
總結(jié)
實(shí)現(xiàn)NDIR測(cè)量所需的模擬電子器件包括精密低噪聲放大器和高分辨率模數(shù)轉(zhuǎn)換器。本文所述的電路是高集成度解決方案,其利用精密模擬微控制器ADuCM360來執(zhí)行精密PGA功能、精密Σ-Δ ADC轉(zhuǎn)換以及數(shù)字控制和處理。
Arduino擴(kuò)展兼容能力支持快速開發(fā)NDIR設(shè)計(jì)原型,以及根據(jù)具體應(yīng)用要求定制軟件。
推薦閱讀: