推薦閱讀:
究竟應該如何擺放PCB布板去耦電容呢?
發(fā)布時間:2018-07-17 責任編輯:lina
【導讀】對于做硬件的工程師,畢業(yè)后開始進公司時,在設計PCB時,老工程師一般都會和他說,PCB走線不要走直角,走線一定要短,電容一定要就近擺放等等。
對于做硬件的工程師,畢業(yè)后開始進公司時,在設計PCB時,老工程師一般都會和他說,PCB走線不要走直角,走線一定要短,電容一定要就近擺放等等。
但是一開始我們可能都不了解為什么這樣做,就憑他們的幾句經(jīng)驗對我們來說是遠遠不夠的哦,當然如果你沒有注意這些細節(jié)問題,今后又犯了,可能又會被他們罵,“都說了多少遍了電容一定要就近擺放,放遠了起不到效果等等”,往往經(jīng)驗告訴我們其實那些老工程師也是只有一部分人才真正掌握其中的奧妙,我們一開始不會也不用難過,多看看資料很快就能掌握的。
直到被罵好幾次后我們回去找相關(guān)資料,為什么設計PCB電容要就近擺放呢,等看了資料后就能了解一些,可是網(wǎng)上的資料很雜散,很少能找到一個很全方面講解的。下面這些內(nèi)容是我轉(zhuǎn)載的一片關(guān)于電容去耦半徑的講解,相信你看了之后可以很牛x的回答和避免類似問題的發(fā)生。
老師 問: 為什么去耦電容就近擺放呢?
學生 答: 因為它有有效半徑哦,放的遠了失效的。
電容去耦的一個重要問題是電容的去耦半徑。大多數(shù)資料中都會提到電容擺放要盡量靠近芯片,多數(shù)資料都是從減小回路電感的角度來談這個擺放距離問題。確實,減小電感是一個重要原因,但是還有一個重要的原因大多數(shù)資料都沒有提及,那就是電容去耦半徑問題。如果電容擺放離芯片過遠,超出了它的去耦半徑,電容將失去它的去耦的作用。
理解去耦半徑最好的辦法就是考察噪聲源和電容補償電流之間的相位關(guān)系。當芯片對電流的需求發(fā)生變化時,會在電源平面的一個很小的局部區(qū)域內(nèi)產(chǎn)生電壓擾動,電容要補償這一電流(或電壓),就必須先感知到這個電壓擾動。信號在介質(zhì)中傳播需要一定的時間,因此從發(fā)生局部電壓擾動到電容感知到這一擾動之間有一個時間延遲。同樣,電容的補償電流到達擾動區(qū)也需要一個延遲。因此必然造成噪聲源和電容補償電流之間的相位上的不一致。
特定的電容,對與它自諧振頻率相同的噪聲補償效果最好,我們以這個頻率來衡量這種相位關(guān)系。
當擾動區(qū)到電容的距離達到時,補償電流的相位為,和噪聲源相位剛好差180度,即完全反相。此時補償電流不再起作用,去耦作用失效,補償?shù)哪芰繜o法 及時送達。為了能有效傳遞補償能量,應使噪聲源和補償電流的相位差盡可能的小,最好是同相位的。距離越近,相位差越小,補償能量傳遞越多,如果距離為0,則補償能量百分之百傳遞到擾動區(qū)。這就要求噪聲源距離電容盡可能的近,要遠小于。實際應用中,這一距離最好控制在(λ/40 -λ/50)之間,這是一個經(jīng)驗數(shù)據(jù)。
例如:0.001uF陶瓷電容,如果安裝到電路板上后總的寄生電感為1.6nH,那么其安裝后的諧振頻率為125.8MHz,諧振周期為7.95ps。假設信號在電路板上的傳播速度為166ps/inch,則波長為47.9英寸。電容去耦半徑為47.9/50=0.958英寸,大約等于2.4厘米。
本例中的電容只能對它周圍2.4厘米范圍內(nèi)的電源噪聲進行補償,即它的去耦半徑2.4厘米。不同的電容,諧振頻率不同,去耦半徑也不同。對于大電容,因為其諧振頻率很低,對應的波長非常長,因而去耦半徑很大,這也是為什么我們不太關(guān)注大電容在電路板上放置位置的原因。對于小電容,因去耦半徑很小,應盡可能的靠近需要去耦的芯片,這正是大多數(shù)資料上都會反復強調(diào)的,小電容要盡可能近的靠近芯片放置。
推薦閱讀:
推薦閱讀:
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設計
- ADI電機運動控制解決方案 驅(qū)動智能運動新時代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 中微公司成功從美國國防部中國軍事企業(yè)清單中移除
- 華邦電子白皮書:滿足歐盟無線電設備指令(RED)信息安全標準
- 功率器件熱設計基礎(chǔ)(九)——功率半導體模塊的熱擴散
- 準 Z 源逆變器的設計
- 第12講:三菱電機高壓SiC芯片技術(shù)
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點膠設備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動車
電動工具
電動汽車
電感
電工電路
電機控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險絲
電流表
電流傳感器
電流互感器
電路保護
電路圖