你的位置:首頁 > 測(cè)試測(cè)量 > 正文

第一講:基于SiC雙極結(jié)型晶體管的高能效設(shè)計(jì)

發(fā)布時(shí)間:2013-05-06 責(zé)任編輯:felixsong

【導(dǎo)讀】為努力實(shí)現(xiàn)更高的功率密度并滿足嚴(yán)格的效率法規(guī)要求以及系統(tǒng)正常運(yùn)行時(shí)間要求,工業(yè)和功率電子設(shè)計(jì)人員在進(jìn)行設(shè)計(jì)時(shí)面臨著不斷降低功率損耗和提高可靠性的難題。SIC雙極結(jié)型晶體管可實(shí)現(xiàn)效率和功率密度的大幅提升,以及改善功率密度、可靠性和效率。從而實(shí)現(xiàn)電力電子的高能耗設(shè)計(jì)。

在過去30多年中,諸如MOSFET和IGBT之類的CMOS替代產(chǎn)品在大多數(shù)電源設(shè)計(jì)中逐漸取代基于硅的BJT,但是今天,基于碳化硅的新技術(shù)為BJT賦予了新的意義,特別是在高壓應(yīng)用中。

碳化硅布局以同等或更低的損耗實(shí)現(xiàn)更高的開關(guān)頻率,并且在相同形狀因數(shù)的情況下可產(chǎn)生更高的輸出功率。運(yùn)用了SiC BJT的設(shè)計(jì)也將使用一個(gè)更小的電感,并且使成本顯著降低。雖然運(yùn)用碳化硅工藝生產(chǎn)的BJT相較于僅基于硅的BJT會(huì)更昂貴,但是使用SiC技術(shù)的優(yōu)勢(shì)在于可在其它方面節(jié)省設(shè)計(jì)成本,從而實(shí)現(xiàn)更低的整體成本。本文介紹的升壓轉(zhuǎn)換器設(shè)計(jì)用于光伏轉(zhuǎn)換階段,其充分利用SiC BJT的優(yōu)勢(shì),在顯著降低系統(tǒng)成本的同時(shí)可實(shí)現(xiàn)良好的效率。

SIC BJT的優(yōu)勢(shì)

基于硅的BJT在高壓應(yīng)用中失寵有幾方面原因。首先,Si BJT中的低電流增益會(huì)形成高驅(qū)動(dòng)損耗,并且隨著額定電流的增加,損耗變得更糟。雙極運(yùn)行也會(huì)導(dǎo)致更高的開關(guān)損耗,并且在器件內(nèi)產(chǎn)生高動(dòng)態(tài)電阻??煽啃砸彩且粋€(gè)問題。在正向偏壓模式下運(yùn)行器件,可能會(huì)在器件中形成具有高電流集中的局部過溫,這可能導(dǎo)致器件發(fā)生故障。此外,電感負(fù)載切換過程中出現(xiàn)的電壓和電流應(yīng)力,可能會(huì)導(dǎo)致電場(chǎng)應(yīng)力超出漂移區(qū),從而導(dǎo)致反向偏壓擊穿。 這會(huì)嚴(yán)格限制反向安全工作區(qū)(RSOA),意味著基于硅的BJT將不具有短路能力。

在運(yùn)用SIC BJT中不存在同樣的問題。與硅相比,碳化硅支持的能帶間隙是其三倍,可產(chǎn)生更大的電流增益,以及更低的驅(qū)動(dòng)損耗,因此BJT的效率更高。碳化硅的擊穿電場(chǎng)強(qiáng)度是硅的10倍,因此器件不太容易受到熱擊穿影響,并且要可靠得多。碳化硅在更高的溫度下表現(xiàn)更出色,因此應(yīng)用范圍更為廣泛,甚至包括汽車環(huán)境。

從成本角度而言,碳化硅的高開關(guān)頻率在硬件級(jí)可實(shí)現(xiàn)成本節(jié)約。雖然相較于基于純硅,基于碳化硅的BJT更昂貴,但SiC工藝的高功率密度將會(huì)轉(zhuǎn)換為更高的芯片利用率,并且支持使用更小的散熱器和更小的過濾器元件。從長(zhǎng)遠(yuǎn)來看,使用更昂貴的碳化硅BJT實(shí)際上更省錢,因?yàn)檎w系統(tǒng)的生產(chǎn)成本更低。我們?cè)O(shè)計(jì)的升壓轉(zhuǎn)換器就是一個(gè)例子。它設(shè)計(jì)用于額定功率為17千瓦的光伏系統(tǒng)中,具有600伏的輸出電壓,輸入范圍為400到530V。

管理效率

BJT的驅(qū)動(dòng)器電路能夠減少損耗和提高系統(tǒng)效率。驅(qū)動(dòng)器做了兩件事:對(duì)器件電容迅速充放電,實(shí)現(xiàn)快速開關(guān);確保連續(xù)提供基極電流,使晶體管在導(dǎo)通狀態(tài)中保持飽和狀態(tài)。

為了支持動(dòng)態(tài)操作,15V的驅(qū)動(dòng)器電源電壓引起更快的瞬態(tài)變化,并提高性能。SiC BJT的閾值電壓約為3V。通常情況下無需使用負(fù)極驅(qū)動(dòng)電壓或米勒鉗位來提高抗擾度。

SiC BJT是一個(gè)常關(guān)型器件,并且僅在持續(xù)提供基極電流時(shí)激活。選擇靜態(tài)操作的基極電流值會(huì)涉及到傳導(dǎo)損耗和驅(qū)動(dòng)損耗間的折衷平衡。盡管有較高的增益值(因此會(huì)形成較低的基極電流),驅(qū)動(dòng)損耗對(duì)SiC BJT仍非常重要,由于SiC布局具有較寬能帶間隙,因此必須在基極和發(fā)射極間提供一個(gè)更高的正向電壓。將基極電流增加一倍,從0.5A增加到1A,僅降低正向等效電阻10%,因此需要降低傳導(dǎo)損耗,同時(shí)使飽和度轉(zhuǎn)變?yōu)檩^高水平。這是我們?cè)O(shè)計(jì)升壓轉(zhuǎn)換器的一個(gè)重要考慮因素,因?yàn)樗鼤?huì)在更高的電流紋波下運(yùn)行。1A的基極電流會(huì)使開關(guān)能力增加至40A。

靜態(tài)驅(qū)動(dòng)損耗是選定驅(qū)動(dòng)電壓和輸入電壓的一個(gè)函數(shù)(間接表示占空比值)。實(shí)現(xiàn)高開關(guān)速度需要 15V的驅(qū)動(dòng)電壓,產(chǎn)生約8W的損耗,主要集中在基極電阻上。為了彌補(bǔ)這方面的損耗,對(duì)于動(dòng)態(tài)和靜態(tài)操作,我們通常使用兩個(gè)單獨(dú)的電源電壓。圖1提供了示意圖。高壓驅(qū)動(dòng)器的控制信號(hào)會(huì)“中斷”,因此它僅在開關(guān)瞬態(tài)期間使能。靜態(tài)驅(qū)動(dòng)階段使用較低電壓,從而可以降低靜態(tài)損耗,并在整個(gè)導(dǎo)通期間保持激活狀態(tài)。

使用兩個(gè)電源電壓降低損耗
圖1:使用兩個(gè)電源電壓降低損耗

減小濾波器的尺寸

在更高的開關(guān)頻率下運(yùn)行,可降低無源元件的成本。為了進(jìn)一步提高功率密度,我們著眼于改善濾波器電感的方法。在評(píng)估了各種核心材料的能力后,我們選擇了一種使用Vitroperm 500 F(一種薄夾層式納米晶體材料)制成的新型磁芯材料。該材料產(chǎn)生的損耗低,且在高頻率下運(yùn)轉(zhuǎn)良好。此外也可在高飽和磁通值下運(yùn)行,這意味著該材料比類似的鐵氧體磁芯(圖2右側(cè))要小得多。使用 Virtoperm磁芯構(gòu)成的濾波電感器,約為參照系統(tǒng)的四分之一大小。

用作頻率函數(shù)的不同芯材的電感器大小,以及與 Vitroperm 和鐵氧體磁芯的大小比較
圖2:用作頻率函數(shù)的不同芯材的電感器大小,以及與Vitroperm和鐵氧體磁芯的大小比

圖2顯示了在最大電流紋波(40%)下對(duì)于不同材料將電感器尺寸作為開關(guān)頻率函數(shù)的因素。在此,我們假設(shè)電感量近似為電感值,而這又取決于峰值磁通密度和開關(guān)頻率。在達(dá)到指定的臨界點(diǎn)(在100mW/cm時(shí)定義的特定損耗)后,需要降低峰值磁通量以避免過熱,從而在該點(diǎn)之外運(yùn)行將不會(huì)導(dǎo)致其大小顯著減小。頻率一定時(shí),Vitroperm500F可在所有材料中實(shí)現(xiàn)最佳性能。

48 kHz 時(shí)的效率和驅(qū)動(dòng)損耗,以及原型圖
圖3:48kHz時(shí)的效率和驅(qū)動(dòng)損耗,以及原型圖

圖3顯示了測(cè)得的效率級(jí),包括采用兩階段解決方案的驅(qū)動(dòng)損耗。根據(jù)計(jì)算得出的損耗分布如下圖曲線所示。該系統(tǒng)可以在沒有達(dá)到臨界溫度或飽和度的情況下達(dá)到高電流負(fù)載。該兩階段驅(qū)動(dòng)解決方案會(huì)將驅(qū)動(dòng)損耗降低至輸入功率的0.02%左右。整體損耗更低使得所需的散熱片尺寸減小,且更高的開關(guān)頻率允許使用更小的過濾器元件。所有這些特性最終有助于降低系統(tǒng)成本。

相關(guān)閱讀;

SiC BJT
:史上最高效率的1200V功率轉(zhuǎn)換開關(guān)
http://anotherwordforlearning.com/power-art/80020702
高能效設(shè)計(jì)研討會(huì):聚焦新能源和電力電子應(yīng)用
http://anotherwordforlearning.com/gptech-art/80017722

[page]
SIC BJT特性:

SiC BJT的特性可歸結(jié)為以下三點(diǎn):1)有史以來最高效的1200V功率轉(zhuǎn)換開關(guān)---最低的總損耗,包括開關(guān)、傳導(dǎo)及驅(qū)動(dòng)器損耗。所有1200V器件中最低的開關(guān)損耗(任意RON條件下);2)簡(jiǎn)單直接的驅(qū)動(dòng)----常關(guān)功能降低了風(fēng)險(xiǎn)和復(fù)雜程度,并減少了限制性能的設(shè)計(jì)。穩(wěn)定的基極輸入,對(duì)過壓/欠壓峰值不敏感;3)強(qiáng)健且可靠---額定工作溫度高:Tj=175°C。由于RON具有正溫度系數(shù),增益具有負(fù)溫度系數(shù),因此易于并聯(lián)。穩(wěn)定持久的Vbe正向電壓和反向阻隔能力。

SIC BJT特性
圖4:SIC BJT特性

SIC BJT與SI IGBT比較:

與IGBT相比,飛兆半導(dǎo)體最近開發(fā)出的碳化硅(SiC) BJT功率器件可實(shí)現(xiàn)效率和功率密度的大幅提升,無論在元件還是系統(tǒng)級(jí),這可幫助設(shè)計(jì)工程師在其設(shè)計(jì)中滿足成本的要求,以及改善功率密度、可靠性和效率。

SiC BJT可提供更高的開關(guān)頻率和更低的損耗,從而可在相同系統(tǒng)尺寸下實(shí)現(xiàn)更高的輸出功率,并降低無源元件的成本,因?yàn)樗试S使用更小的電感、電容和散熱器。

SiC BJT可提供目前市場(chǎng)上最低的傳導(dǎo)損耗,因?yàn)樗膶?dǎo)通電阻每平方厘米只有2.2毫歐姆,它的開關(guān)總損耗也是最低的,包括驅(qū)動(dòng)器損耗。SiC BJT直流增益大于70。

SiC BJT可提供更高的開關(guān)頻率,它開與關(guān)之間的轉(zhuǎn)換時(shí)間只有20ns,而且這一性能與工作溫度無關(guān)。更重要的一點(diǎn)是,SiC BJT開關(guān)轉(zhuǎn)換時(shí)沒有尾流。

SIC BJT與SI IGBT比較
圖5:SIC BJT與SI IGBT比較

SIC BJT應(yīng)用領(lǐng)域


今天的很多電子應(yīng)用諸如可再生能源、工業(yè)控制系統(tǒng)和移動(dòng)電源都要求高效率、小尺寸和重量輕。SiC BJT剛好可以滿足以上要求,與今天的任何其他晶體管(如MOSFET和IGBT)相比,它可提供業(yè)內(nèi)最高的效率,同時(shí)它還消除了許多尺寸、重量、溫度和效率方面的折中考慮。

在改善效率領(lǐng)域,SiC BJT針對(duì)的目標(biāo)應(yīng)用包括:太陽能逆變器、充電樁、移動(dòng)電源、電機(jī)驅(qū)動(dòng)、PFC輸入級(jí)、DC-AC轉(zhuǎn)換器、焊接系統(tǒng)和DC-DC轉(zhuǎn)換器。

與此同時(shí),SiC BJT的另一大獨(dú)特性能優(yōu)勢(shì)是它可以在高溫下提供可靠的開關(guān)操作,這在油氣鉆探、能量收集、商業(yè)航空、特定的汽車和工業(yè)設(shè)計(jì)應(yīng)用中是至關(guān)重要的。在高溫應(yīng)用領(lǐng)域,SiC BJT針對(duì)的目標(biāo)應(yīng)用包括:馬達(dá)和渦輪控制、安全監(jiān)控、高溫馬達(dá)驅(qū)動(dòng)、高溫執(zhí)行器控制和高溫DC轉(zhuǎn)換器。

SIC BJT可實(shí)現(xiàn)低傳導(dǎo)損耗、高擊穿場(chǎng)強(qiáng)度,并且可在更廣泛的溫度范圍內(nèi)穩(wěn)定運(yùn)行。在驅(qū)動(dòng)器電路中使用兩個(gè)電源電壓,可降低驅(qū)動(dòng)損耗,實(shí)現(xiàn)良好效率。更高的開關(guān)頻率允許使用更小的電感器,從而在系統(tǒng)級(jí)實(shí)現(xiàn)顯著的成本節(jié)約。高壓應(yīng)用(如光伏逆變器)將受益于高功率密度、更低系統(tǒng)成本和簡(jiǎn)易的設(shè)計(jì)。

相關(guān)閱讀;

SiC BJT
:史上最高效率的1200V功率轉(zhuǎn)換開關(guān)
http://anotherwordforlearning.com/power-art/80020702
高能效設(shè)計(jì)研討會(huì):聚焦新能源和電力電子應(yīng)用
http://anotherwordforlearning.com/gptech-art/80017722
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
共模電感 固態(tài)盤 固體繼電器 光傳感器 光電池 光電傳感器 光電二極管 光電開關(guān) 光電模塊 光電耦合器 光電器件 光電顯示 光繼電器 光控可控硅 光敏電阻 光敏器件 光敏三極管 光收發(fā)器 光通訊器件 光纖連接器 軌道交通 國防航空 過流保護(hù)器 過熱保護(hù) 過壓保護(hù) 焊接設(shè)備 焊錫焊膏 恒溫振蕩器 恒壓變壓器 恒壓穩(wěn)壓器
?

關(guān)閉

?

關(guān)閉